ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Roughening of Curvature-Driven Growth With a Variable Interface Window

89   0   0.0 ( 0 )
 نشر من قبل Yongjun Chen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the curvature-driven roughening of a disk domain pattern with a variable interface window. The relaxation of interface is driven by negative surface tension . When a domain boundary propagates radially at a constant rate, we found that evolution of interface roughness follows scaling dynamic behavior. The local growth exponents are substantially different from the global exponents. Curvature-driven roughening belongs to a new class of anomalous roughening dynamics. However, a different surface tension leads to different global exponents. This is different from that of interface evolution with a fixed-size window, which has universal exponent. The variable growth window leads to a new class of anomalous roughening dynamics.


قيم البحث

اقرأ أيضاً

Left- and right-handed helical modes statistical absolute equilibria appear textit{separately}. If both chiral sectors present, one can dominate around its positive pole, which is relevant to the nearly maximally helical (force free for magnetic fiel d) states of turbulence. Pure magnetodynamics (PMD, or electron magnetohydrodynamics --- EMHD), pure hydrodynamics (PHD), and, single-fluid and two-fluid MHDs are studied. Relevant documented data and issues of cascade properties, and, helical and nonhelical dynamos are revisited. We also discuss new scenarios, such as PMD inverse magnetic helicity and forward energy cascades, and, the continuous transition from completely-inverse to partly-inverse-and-partly-forward and to completely-forward energy transfers in PHD.
We develop a theoretical framework for understanding dynamic morphologies and stability of droplet interface bilayers (DIBs), accounting for lipid kinetics in the monolayers and bilayer, and droplet evaporation due to imbalance between osmotic and La place pressures. Our theory quantitatively describes distinct pathways observed in experiments when DIBs become unstable. We find that when the timescale for lipid desorption is slow compared to droplet evaporation, the lipid bilayer will grow and the droplets approach a hemispherical shape. In contrast, when lipid desorption is fast, the bilayer area will shrink and the droplets eventually detach. Our model also suggests there is a critical size below which DIBs cannot be stable, which may explain experimental difficulties in miniaturising the DIB platform.
We study pattern formation, fluctuations and scaling induced by a growth-promoting active walker on an otherwise static interface. Active particles on an interface define a simple model for energy consuming proteins embedded in the plasma membrane, r esponsible for membrane deformation and cell movement. In our model, the active particle overturns local valleys of the interface into hills, simulating growth, while itself sliding and seeking new valleys. In 1D, this overturn-slide-search dynamics of the active particle causes it to move superdiffusively in the transverse direction while pulling the immobile interface upwards. Using Monte Carlo simulations, we find an emerging tent-like mean profile developing with time, despite large fluctuations. The roughness of the interface follows scaling with the growth, dynamic and roughness exponents, derived using simple arguments as $beta=2/3, z=3/2, alpha=1/2$ respectively, implying a breakdown of the usual scaling law $beta = alpha/z$, owing to very local growth of the interface. The transverse displacement of the puller on the interface scales as $sim t^{2/3}$ and the probability distribution of its displacement is bimodal, with an unusual linear cusp at the origin. Both the mean interface pattern and probability distribution display scaling. A puller on a static 2D interface also displays aspects of scaling in the mean profile and probability distribution. We also show that a pusher on a fluctuating interface moves subdiffusively leading to a separation of time scale in pusher motion and interface response.
We study numerically the roughening properties of an interface in a two-dimensional Ising model with either random bonds or random fields, which are representative of universality classes where disorder acts only on the interface or also away from it , in the bulk. The dynamical structure factor shows a rich crossover pattern from the form of a pure system at large wavevectors $k$, to a different behavior, typical of the kind of disorder, at smaller $k$s. For the random field model a second crossover is observed from the typical behavior of a system where disorder is only effective on the surface, as the random bond model, to the truly large scale behavior, where bulk-disorder is important, that is observed at the smallest wavevectors.
We report forced radial imbibition of water in a porous medium in a Hele-Shaw cell. Washburns law is confirmed in our experiment. Radial imbibition follows scaling dynamics and shows anomalous roughening dynamics when the front invades the porous med ium. The roughening dynamics depend on the flow rate of the injected fluid. The growth exponents increase linearly with an increase in the flow rate while the roughness exponents decrease with an increase in the flow rate. Roughening dynamics of radial imbibition is markedly different from one dimensional imbibition with a planar interface window. Such difference caused by geometric change suggests that universality class for the interface growth is not universal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا