ترغب بنشر مسار تعليمي؟ اضغط هنا

A series of Ruddlesden-Popper nickelates, Nd$_{n+1}$Ni$_{n}$O$_{3n+1}$ (${n}$ = 1-5), have been stabilized in thin film form using reactive molecular-beam epitaxy. High crystalline quality has been verified by X-ray diffraction and scanning transmiss ion electron microscopy. X-ray photoelectron spectroscopy indicates the ${n}$-dependent valence states of nickel in these compounds. Metal-insulator transitions show clear ${n}$ dependence for intermediate members (${n}$ = 3-5), and the low-temperature resistivities of which show logarithmic dependence, resembling the Kondo-scattering as observed in the parent compounds of superconducting infinite-layer nickelates.
The recent discovery of superconductivity in infinite-layer nickelate films has aroused great interest since it provides a new platform to explore the mechanism of high-temperature superconductivity. However, superconductivity only appears in the thi n film form and synthesizing superconducting nickelate films is extremely challenging, limiting the in-depth studies on this compound. Here, we explore the critical parameters in the growth of high quality nickelate films using molecular beam epitaxy (MBE). We found that stoichiometry is crucial in optimizing the crystalline structure and realizing superconductivity in nickelate films. In precursor NdNiO3 films, optimal stoichiometry of cations yields the most compact lattice while off-stoichiometry of cations causes obvious lattice expansion, influencing the subsequent topotactic reduction and the emergence of superconductivity in infinite-layer nickelates. Surprisingly, in-situ reflection high energy electron diffraction (RHEED) indicates that some impurity phases always appear once Sr ions are doped into NdNiO3 although the X-ray diffraction (XRD) data are of high quality. While these impurity phases do not seem to suppress the superconductivity, their impacts on the electronic and magnetic structure deserve further studies. Our work demonstrates and highlights the significance of cation stoichiometry in superconducting nickelate family.
94 - Ying Xiang , Qing Li , Yueying Li 2020
The newly found superconductivity in infinite-layer nickelate superconducting films has attracted much attention, because their crystalline and electronic structures are similar to high-$T_c$ cuprate superconductors. The upper critical field can prov ide much information on superconductivity, but detailed experimental data are still lacking in these films. Here we present temperature and angle dependence of resistivity measured under different magnetic fields ($H$) in Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ thin films. The onset superconducting transition occurs at about 16.2 K at 0 T. Temperature dependent upper critical fields determined by using a criterion very close to the onset transition show a clear negative curvature near the critical transition temperature, which is explained as the consequence of the paramagnetically limited effect on superconductivity. The temperature dependent anisotropy of the upper critical field is obtained from resistivity data, which yields a value decreasing from 3 to 1.2 with lowering temperature. This can be explained by a variable contribution from the orbital limit effect on upper critical field. The angle dependent resistivity at a fixed temperature and different magnetic fields cannot be scaled to one curve, which deviates from the prediction of the anisotropic Ginzburg-Landau theory. However, at low temperatures, the increased resistivity by magnetic field can be scaled by the parameter $H^beta |costheta|$ ($1<beta<6$) with $theta$ the angle enclosed between $c$-axis and the applied magnetic field. As the first detailed study on the upper critical field of the nickelate thin films, our results clearly indicate a small anisotropy and paramagnetically limited effect of superconductivity in nickelate superconductors.
The pairing mechanism in cuprates remains as one of the most challenging issues in the field of condensed matter physics. The unique 3d9 electron orbital of the Cu2+ ionic states in cuprates is supposed to be the major player for the occurrence of su perconductivity. Recently, superconductivity at about 9-15 K was discovered in infinite layer thin films of nickelate Nd1-xSrxNiO2 (x=0.1-0.2) which is believed to have the similar 3d9 orbital electrons. The key issue concerned here is about the superconducting gap function. Here we report the first set data of single particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted very well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Our results suggest that the newly found Ni-based superconductors play as close analogs to cuprates, and thus demonstrate the commonality of unconventional superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا