ترغب بنشر مسار تعليمي؟ اضغط هنا

Two superconducting components with different symmetries in Nd1-xSrxNiO2 films

117   0   0.0 ( 0 )
 نشر من قبل Hai-Hu Wen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pairing mechanism in cuprates remains as one of the most challenging issues in the field of condensed matter physics. The unique 3d9 electron orbital of the Cu2+ ionic states in cuprates is supposed to be the major player for the occurrence of superconductivity. Recently, superconductivity at about 9-15 K was discovered in infinite layer thin films of nickelate Nd1-xSrxNiO2 (x=0.1-0.2) which is believed to have the similar 3d9 orbital electrons. The key issue concerned here is about the superconducting gap function. Here we report the first set data of single particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted very well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Our results suggest that the newly found Ni-based superconductors play as close analogs to cuprates, and thus demonstrate the commonality of unconventional superconductivity.

قيم البحث

اقرأ أيضاً

The recent reports of superconductivity in Nd1-xSrxNiO2/SrTiO3 heterostructures have reinvigorated interest in potential superconductivity of low-valence nickelates. Synthesis of Ni1+-containing compounds is notoriously difficult. In the current work , a combined sol-gel combustion and high-pressure annealing technique was employed to prepare polycrystalline perovskite Nd1-xSrxNiO3 (x = 0, 0.1 and 0.2). Metal nitrates and metal acetates were used as starting materials, and the latter were found to be superior to the former in terms of safety and reactivity. The Nd1-xSrxNiO3 compounds were subsequently reduced to Nd1 xSrxNiO2 using calcium hydride in a sealed, evacuated quartz tube. To understand the synthesis pathway, the evolution from NdNiO3 to NdNiO2 was monitored using in-situ synchrotron X ray diffraction during the reduction process. Electrical transport properties were consistent with an insulator-metal transition occurring between x = 0 and 0.1 for Nd1-xSrxNiO3. Superconductivity was not observed in our bulk samples of Nd1-xSrxNiO2. Neutron diffraction experiments at 3 K and 300 K were performed on Nd0.9Sr0.1NiO2, in which no magnetic Bragg reflections were observed, and the results of structural Rietveld refinement are provided.
We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1} $ = 5.5 K at ambient pressure initially increases with increasing pressure and has a maximum at $sim$ 3.0 GPa. Above 2.3 GPa, a clear zero-resistivity is observed (SC-I phase) and this superconducting (SC) state coexists with AFM-I phase. The SC-I phase suddenly disappears at 3.7 GPa simultaneously with the appearance of an additional kink anomaly corresponding to the phase transition to AFM-II phase. The AFM-II phase is continuously suppressed with further increasing pressure and disappears at $sim$ 6.5 GPa. In the narrow range near the critical pressure, an SC phase reappears (SC-II phase). A large initial slope of upper critical field $mu_0H_{rm c2}$ and non-Fermi liquid behavior indicate that the SC-II phase is mediated by antiferromagnetic fluctuations. On the other hand, the robust coexistence of the SC-I phase and AFM-I phase is unusual on the contrary to superconductivity near a quantum critical point on most of heavy-fermion compounds.
We report the magnetotransport properties of thin polycrystalline films of the recently discovered non-oxide perovskite superconductor MgCNi3. CNi3 precursor films were deposited onto sapphire substrates and subsequently exposed to Mg vapor at 700 C. We report transition temperatures (Tc) and critical field values (Hc2) of MgCNi3 films ranging in thickness from 7.5 nm to 100 nm. Films thicker than ~40 nm have a Tc ~ 8 K, and an upper critical field Hc2 ~ 14 T, which are both comparable to that of polycrystalline powders. Hall measurements in the normal state give a carrier density, n =-4.2 x 10^22 cm^-3, that is approximately 4 times that reported for bulk samples.
Superconducting films in contact with non-superconducting regular arrays can exhibit commensurability effects between the vortex lattice and the unit cell of the pinning array. These matching effects yield a slowdown of the vortex flow and the corres ponding dissipation decrease. The superconducting samples are Nb films grown on Si substrates. We have studied these matching effects with the array on top, embedded or threading the Nb superconducting films and using different materials (Si, Cu, Ni, Py dots and dots fabricated with Co/Pd multilayers). These hybrids allow studying the contribution of different pinning potentials to the matching effects. The main findings are: i) Periodic roughness induced in the superconducting film is enough to generate resistivity minima; ii) A minor effect is achieved by magnetic pinning from periodic magnetic field potentials obtained by dots with out of plane magnetization grown on top of the superconducting film, iii) In the case of array of magnetic dots embedded in the films vortex flow probes the magnetic state; i.e. magnetoresistance measurements detect the magnetic state of very small nanomagnets. In addition, we have studied the role played by the local order in the commensurability effects. This was attained using an array that mimics a smectic crystal. We have found that preserving the local order is crucial. If the local order is not retained the magnetoresistance minima vanish.
We present experimental results of the upper critical fields $H_{rm c2}$ of various MgB$_2$ thin films prepared by the molecular beam epitaxy, multiple-targets sputtering, and co-evaporation deposition apparatus. Experimental data of the $H_{rm c2}(T )$ are successfully analyzed by applying the Gurevich theory of dirty two-band superconductivity in the case of $D_{pi}/D_{sigma}>1$, where $D_{pi}$ and $D_{sigma}$ are the intraband electron diffusivities for $pi$ and $sigma$ bands, respectively. We find that the parameters obtained from the analysis are strongly correlated to the superconducting transition temperature $T_{rm c}$ of the films. We also discuss the anormalous narrowing of the transition width at intermediate temperatures confirmed by the magnetoresistance measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا