ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently topological superconducting states has attracted a lot of interest. In this work, we consider a topo- logical superconductor with $Z_2$ topological mirror order [1] and s$pm$-wave superconducting pairing symmetry, within a two-orbital model originally designed for iron-based superconductivity [2]. We predict the existence of gapless edge states. We also study the local electronic structure around an adsorbed interstitial magnetic impurity in the system, and find the existence of low-energy in-gap bound states even with a weak spin polar- ization on the impurity. We also discuss the relevance of our results to the recent STM experiment on Fe(Te,Se) compound with adsorbed Fe impurity [3], for which our density functional calculations show the Fe impurity is spin polarized.
71 - Bo Li , Lihua Pan , Yuan-Yen Tai 2015
The pairing symmetry is examined in highly electron-doped Ba(Fe$_{1-x}$Co$_x$As)$_2$ and A$_y$Fe$_2$Se$_2$ (with A=K, Cs) compounds, with similar crystallographic and electronic band structures. Starting from a phenomenological two-orbital model, we consider nearest-neighbor and next-nearest-neighbor intraorbital pairing interactions on the Fe square lattice. In this model, we find a unified description of the evolution from $s_pm$-wave pairing ($2.0 < n lesssim 2.4$) to $d$-wave pairing ($2.4 lesssim n lesssim 2.5$) as a function of electron filling. In the crossover region a novel time-reversal symmetry breaking state with $s_pm+id$ pairing symmetry emerges. This minimal model offers an overall picture of the evolution of superconductivity with electron doping for both $s_pm$-wave [Ba(Fe$_{1-x}$Co$_x$As)$_2$] and $d$-wave [A$_y$Fe$_2$Se$_2$] pairing, as long as the dopants only play the role of a charge reservoir. However, the situation is more complicated for Ba(Fe$_{1-x}$Co$_x$As)$_2$. A real-space study further shows that when the impurity scattering effects of Co dopants are taken into account, the superconductivity is completely suppressed for $n > 2.4$. This preempts any observation of $d$-wave pairing in this compound, in contrast to A$_y$Fe$_2$Se$_2$.
108 - Lihua Pan , Jian Li , Yuan-Yen Tai 2014
Based on a minimal two-orbital model [Tai {it et al.}, Europhys. Lett. textbf{103}, 67001 (2013)], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe$_{2}$As$_{2}$, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model[K. Toshikaze {it et al.}, J. Phys. Soc. Jpn. textbf{79}, 083704 (2010)]. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the ingap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of ingap states and the evolution of the LDOS near a strong scattering single impurity can be validated by experiments probing the local quasiparticle spectrum.
The electronic band structure of iron pnictides exhibits four Dirac cones, which are due to crystal symmetry and orbital bonding orientation. This hallmark signature presents the pnictide family as an ideal candidate in the search for quasi-two-dimen sional topological crystalline insulators. In this report, we explore interaction-induced topological phases which cannot be described by conventional local order parameters. Based on a model Hamiltonian our symmetry analysis shows that sponta- neous novel topological phases may be realized in compounds with tetragonal crystal field symmetry, where the electrons occupy the two degenerate t2g energy levels at low temperature. We identify two stable topological phases in the ground state, which emerge from spontaneous orbital current order. These currents are driven by electronic correlations caused by inter-orbital Coulomb interactions. The first topological phase is an anomalous orbital Hall phase, characterized by a nonzero Chern number, while the second topological phase has a vanishing Chern number, though with an extra Z2-like invariant that preserves parity. More specifically, the interaction-induced novel phase of the quasi-two-dimensional topological crystalline insulator is protected by mirror reflection symmetries and therefore may be realized in pnictides.
189 - Lihua Pan , Jian Li , Yuan-Yen Tai 2013
Based on the minimum two-orbital model and the phase diagram recently proposed by Tai et al. (Europhys. Lett. textbf{103}, 67001(2013)) for both electron- and hole-doped 122 iron-based superconducting compounds, we use the Bogoliubov-de Gennes equati ons to perform a comprehensive investigation of the evolution of the Fermi surface (FS) topology in the presence of the collinear spin-density-wave (SDW) order as the doping is changed. In the parent compound, the ground state is the SDW order, where the FS is not completely gapped, and two types of Dirac cones, one electron-doped and the other hole-doped emerge in the magnetic Brillouin zone. Our findings are qualitatively consistent with recent angle-resolved photoemission spectroscopy and magneto-resistivity measurements. We also examine the FS evolution of both electron- and hole-doped cases and compare them with measurements, as well as with those obtained by other model Hamiltonians.
We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from $C_4$ to $D_{2d}$, which accurately describes the Fermi surface evolution of the electron-doped BaFe$_{2-x}$Co$_x$As$_2$ and hole-doped Ba$_{1-y}$K$_y$Fe$_2$As$_2$ compounds. An investigation of the phase diagram with a mean-field $t$-$U$-$V$ Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of $t$, $U$ and $V$ parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits $s^pm$-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting $s^pm + d$-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian.
We develop an effective multiorbital mean-field t-J Hamiltonian with realistic tight-binding and exchange parameters to describe the electronic and magnetic structures of iron-selenide based superconductors $A_x$Fe$_{2-y}$Se$_2$ for iron vacancy dopi ng in the range $0 leq y leq 0.4$. The Fermi surface topology extracted from the spectral function of angle-resolved photoemission spectroscopy (ARPES) experiments is adequately accounted for by a tight-binding lattice model with random vacancy disorder. Since introducing iron vacancies breaks the lattice periodicity of the stochiometric compound, it greatly affects the electronic band structure. With changing vacancy concentration the electronic band structure evolves, leading to a reconstruction of the Fermi surface topology. For intermediate doping levels, the realized stable electronic structure is a compromise between the solutions for the perfect lattice with $y=0$ and the vacancy stripe-ordered lattice with $y=0.4$, which results in a competition between vacancy random disorder and vacancy stripe order. A multiorbital hopping model is parameterized by fitting Fermi surface topologies to ARPES experiments, from which we construct a mean-field t-J lattice model to study the paramagnetic and antiferromagnetic (AFM) phases of K$_{0.8}$Fe$_{1.6}$Se$_2$. In the AFM phase the calculated spin magnetization of the t-J model leads to a checker-board block-spin structure in good agreement with neutron scattering experiments and {it ab}-{it initio} calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا