ترغب بنشر مسار تعليمي؟ اضغط هنا

We study quantum phases and phase transitions in a one-dimensional interacting fermion system with a Lieb-Schultz-Mattis (LSM) type anomaly. Specifically, the inversion symmetry enforces any symmetry-preserving gapped ground state of the system to be a Kitaev chain, following a Lieb-Schultz-Mattis type theorem that we prove. Alternatively, via the Jordan-Wigner transformation, this system describes a spin system whose gapped ground states must break either the inversion or the Ising symmetry associated with fermion parity. We obtain a phase diagram using analytical methods and variational matrix product state simulations, and study the critical behaviors of the quantum phase transitions therein using entanglement entropy, energy variance and finite size scaling of order parameters. In particular, we observe continuous phase transitions between different ordered phases that are beyond the Ginzburg-Landau-Wilson paradigm, in analogy to the deconfined quantum critical points in two spatial dimensions. We show this type of 1D deconfined quantum critical point is described by the Tomonaga-Luttinger liquid theory, and extract the Luttinger parameter and critical exponents. We also identify a gapless phase between two ordered phases, which cannot be described by a U(1) Luttinger liquid.
142 - Bowen Shi , Xin Dai , Yuan-Ming Lu 2020
We study the entanglement behavior of a random unitary circuit punctuated by projective measurements at the measurement-driven phase transition in one spatial dimension. We numerically study the logarithmic entanglement negativity of two disjoint int ervals and find that it scales as a power of the cross-ratio. We investigate two systems: (1) Clifford circuits with projective measurements, and (2) Haar random local unitary circuit with projective measurements. Remarkably, we identify a power-law behavior of entanglement negativity at the critical point. Previous results of entanglement entropy and mutual information point to an emergent conformal invariance of the measurement-driven transition. Our result suggests that the critical behavior of the measurement-driven transition is distinct from the ground state behavior of any emph{unitary} conformal field theory.
Lattice translation symmetry gives rise to a large class of weak topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constr aints on the weak topological indices that define these phases. In particular we show that screw rotation symmetry enforces the Hall conductivity along the screw axis to be quantized in multiples of the screw rank, which generally applies to interacting systems. We further show that certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden by the Bravais-lattice and by glide or even-fold screw symmetries. These results put a strong constraints on candidates of weak TIs in the experimental and numerical search for topological materials, based on the crystal structure alone.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا