ﻻ يوجد ملخص باللغة العربية
We study the entanglement behavior of a random unitary circuit punctuated by projective measurements at the measurement-driven phase transition in one spatial dimension. We numerically study the logarithmic entanglement negativity of two disjoint intervals and find that it scales as a power of the cross-ratio. We investigate two systems: (1) Clifford circuits with projective measurements, and (2) Haar random local unitary circuit with projective measurements. Remarkably, we identify a power-law behavior of entanglement negativity at the critical point. Previous results of entanglement entropy and mutual information point to an emergent conformal invariance of the measurement-driven transition. Our result suggests that the critical behavior of the measurement-driven transition is distinct from the ground state behavior of any emph{unitary} conformal field theory.
We propose entanglement negativity as a fine-grained probe of measurement-induced criticality. We motivate this proposal in stabilizer states, where for two disjoint subregions, comparing their mutual negativity and their mutual information leads to
When an extended system is coupled at its opposite boundaries to two reservoirs at different temperatures or chemical potentials, it cannot achieve a global thermal equilibrium and is instead driven to a set of current-carrying nonequilibrium states.
We show that weak measurements can induce a quantum phase transition of interacting many-body systems from an ergodic thermal phase with a large entropy to a nonergodic localized phase with a small entropy, but only if the measurement strength exceed
Disordered non-interacting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the density of states and other physical observables. Recen
We study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each time step. We encounter two pha