ترغب بنشر مسار تعليمي؟ اضغط هنا

122 - Yu.B. Ivanov 2013
Transverse-mass spectra, their inverse slopes and mean transverse masses in relativistic collisions of heavy nuclei are analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 39 GeV. The analysis is performed within the three-fluid model employing three different equations of state (EoSs): a purely hadronic EoS, an EoS with the first-order phase transition and that with a smooth crossover transition into deconfined state. Calculations show that inverse slopes and mean transverse masses of all the species (with the exception of antibaryons within the hadronic scenario) exhibit a step-like behavior similar to that observed for mesons and protons in available experimental data. This step-like behavior takes place for all considered EoSs and results from the freeze-out dynamics rather than is a signal of the deconfinement transition. A good reproduction of experimental inverse slopes and mean transverse masses for light species (up to proton) is achieved within all the considered scenarios. The freeze-out parameters are precisely the same as those used for reproduction of particles yields in previous papers of this series. This became possible because the freeze-out stage is not completely equilibrium.
133 - Yu.B. Ivanov 2013
Particle production in relativistic collisions of heavy nuclei is analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 62.4 GeV. The analysis is performed within the three-fluid model employing three different equations of state (EoS): a purely hadronic EoS, an EoS with the first-order phase transition and that with a smooth crossover transition. It is found that the hadronic scenario fails to reproduce experimental yields of antibaryons (strange and nonstrange), starting already from lower SPS energies, i.e. $sqrt{s_{NN}}>$ 5 GeV. Moreover, at energies above the top SPS one, i.e. $sqrt{s_{NN}}>$ 17.4 GeV, the mid-rapidity densities predicted by the hadronic scenario considerably exceed the available RHIC data on all species. At the same time the deconfinement-transition scenarios reasonably agree (to a various extent) with all the data. The present analysis demonstrates certain advantage of the deconfinement-transition EoSs. However, all scenarios fail to reproduce the strangeness enhancement in the incident energy range near 30A GeV (i.e. a horn anomaly in the $K^+/pi^+$ ratio) and yields of $phi$-mesons at 20A--40A GeV.
57 - Yu.B. Ivanov 2011
It is argued that the experimentally observed baryon stopping indicates a non-monotonous behaviour as a function of the incident energy of colliding nuclei. This can be quantified by a midrapidity reduced curvature of the net-proton rapidity spectrum and reveals itself as a zigzag irregularity in the excitation function of this curvature. The three-fluid dynamic calculations with a hadronic equation of state (EoS) fail to reproduce this irregularity. At the same time, the same calculations with an EoS involving a first-order phase transition and a crossover one into the quark-gluon phase do reproduce this zigzag behaviour, however only qualitatively.
A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasi-particles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the model developed by Gelman, Shuryak and Zahed. It is shown that this me thod is able to reproduce the QCD lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces and turns out to be colorless. At the temperature as large as twice the critical one no bound states are observed. Quantum effects turned out to be of prime importance in these simulations.
A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles is studied by a path-integral Monte-Carlo method, which improves the corresponding classical simulations by extending them to the quantum regime. It is shown that this me thod is able to reproduce the lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces. Quantum effects turned out to be of prime importance in these simulations.
84 - Yu.B. Ivanov 2010
It is argued that the experimentally observed baryon stopping may indicate (within the present experimental uncertainties) a non-monotonous behaviour as a function of the incident energy of colliding nuclei. This can be quantified by a midrapidity re duced curvature of the net-proton rapidity spectrum. The above non-monotonous behaviour reveals itself as a zig-zag irregularity in the excitation function of this curvature. The three-fluid dynamic calculations with a hadronic equation of state (EoS) fail to reproduce this irregularity. At the same time, the same calculations with an EoS involving a first-order phase transition into the quark-gluon phase do reproduce this zig-zag behaviour, however only qualitatively.
Elliptic flow in heavy-ion collisions at incident energies $E_{lab}simeq$ (1--160)A GeV is analyzed within the model of 3-fluid dynamics (3FD). We show that a simple correction factor, taking into account dissipative affects, allows us to adjust the 3FD results to experimental data. This single-parameter fit results in a good reproduction of the elliptic flow as a function of the incident energy, centrality of the collision and rapidity. The experimental scaling of pion eccentricity-scaled elliptic flow versus charged-hadron-multiplicity density per unit transverse area turns out to be also reasonably described. Proceeding from values of the Knudsen number, deduced from this fit, we estimate the upper limit the shear viscosity-to-entropy ratio as $eta/s sim 1-2$ at the SPS incident energies. This value is of the order of minimal $eta/s$ observed in water and liquid nitrogen.
A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motiva tion of the Cooper--Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper--Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.
Transverse-mass spectra of protons, pions and kaons produced in collisions of heavy nuclei are analyzed within the model of 3-fluid dynamics. It was demonstrated that this model consistently reproduces these spectra in wide ranges of incident energie s E_{lab}, from 4A GeV to 160A GeV, rapidity bins and centralities of the collisions. In particular, the model describes the step-like dependence of kaon inverse slopes on the incident energy. The key point of this explanation is interplay of hydrodynamic expansion of the system with its dynamical freeze-out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا