ﻻ يوجد ملخص باللغة العربية
It is argued that the experimentally observed baryon stopping may indicate (within the present experimental uncertainties) a non-monotonous behaviour as a function of the incident energy of colliding nuclei. This can be quantified by a midrapidity reduced curvature of the net-proton rapidity spectrum. The above non-monotonous behaviour reveals itself as a zig-zag irregularity in the excitation function of this curvature. The three-fluid dynamic calculations with a hadronic equation of state (EoS) fail to reproduce this irregularity. At the same time, the same calculations with an EoS involving a first-order phase transition into the quark-gluon phase do reproduce this zig-zag behaviour, however only qualitatively.
Transverse-mass spectra of protons, pions and kaons produced in collisions of heavy nuclei are analyzed within the model of 3-fluid dynamics. It was demonstrated that this model consistently reproduces these spectra in wide ranges of incident energie
Elliptic flow in heavy-ion collisions at incident energies $E_{lab}simeq$ (1--160)A GeV is analyzed within the model of 3-fluid dynamics (3FD). We show that a simple correction factor, taking into account dissipative affects, allows us to adjust the
Simulations of relativistic heavy-ion collisions within the three-fluid model employing a purely hadronic equation of state (EoS) and t
The probability of a projectile nucleon to traverse a target nucleus without interaction is calculated for central Si-Pb collisions and compared to the data of E814. The calculations are performed in two independent ways, via Glauber theory and using
The stopping behaviour of baryons in massive heavy ion collisions (at SPS, RHIC and LHC) is investigated within different microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data