ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate non-adiabatic charge pumping utilizing a sequence of coherent oscillations between a superconducting island and two reservoirs. Our method, based on pulsed quantum state manipulations, allows to speedup charge pumping to a rate which i s limited by the coupling between the island and the reservoirs given by the Josephson energy. Our experimental and theoretical studies also demonstrate that relaxation can be employed to reset the pump and avoid accumulation of errors due to non-ideal control pulses.
We provide a direct proof of two-electron Andreev transitions in a superconductor - normal metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.
We have investigated charge transport in ultrasmall superconducting single and double Josephson junctions coupled to resonant modes of the electromagnetic environment. We observe pronounced current peaks in the transport characteristics of both types of devices and attribute them to the process involving simultaneous tunneling of Cooper pairs and photon emission into the resonant modes. The experimental data is well reproduced with the theoretical models.
We have suspended an Al based single-electron transistor whose island can resonate freely between the source and drain leads forming the clamps. In addition to the regular side gate, a bottom gate with a larger capacitance to the SET island is placed underneath to increase the SET coupling to mechanical motion. The device can be considered as a doubly clamped Al beam that can transduce mechanical vibrations into variations of the SET current. Our simulations based on the orthodox model, with the SET parameters estimated from the experiment, reproduce the observed transport characteristics in detail.
We have studied damping in polycrystalline Al nanomechanical resonators by measuring the temperature dependence of their resonance frequency and quality factor over a temperature range of 0.1 - 4 K. Two regimes are clearly distinguished with a crosso ver temperature of 1 K. Below 1 K we observe a logarithmic temperature dependence of the frequency and linear dependence of damping that cannot be explained by the existing standard models. We attribute these phenomena to the effect of the two-level systems characterized by the unexpectedly long (at least two orders of magnitude longer) relaxation times and discuss possible microscopic models for such systems. We conclude that the dynamics of the two-level systems is dominated by their interaction with one-dimensional phonon modes of the resonators.
We present an experimental study of hybrid turnstiles with high charging energies in comparison to the superconducting gap. The device is modeled with the sequential tunneling approximation. The backtunneling effect is shown to limit the amplitude of the gate drive and thereby the maximum pumped current of the turnstile. We compare results obtained with sine and square wave drive and show how a fast rise time can suppress errors due to leakage current. Quantized current plateaus up to 160 pA are demonstrated.
A small superconducting electrode (a single-Cooper-pair box) connected to a reservoir via a Josephson junction constitutes an artificial two-level system, in which two charge states that differ by 2e are coupled by tunneling of Cooper pairs. Despite its macroscopic nature involving a large number of electrons, the two-level system shows coherent superposition of the two charge states, and has been suggested as a candidate for a qubit, i.e. a basic component of a quantum computer. Here we report on time-domain observation of the coherent quantum-state evolution in the two-level system by applying a short voltage pulse that modifies the energies of the two levels nonadiabatically to control the coherent evolution. The resulting state was probed by a tunneling current through an additional probe junction. Our results demonstrate coherent operation and measurement of a quantum state of a single two-level system, i.e. a qubit, in a solid-state electronic device.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا