ﻻ يوجد ملخص باللغة العربية
We provide a direct proof of two-electron Andreev transitions in a superconductor - normal metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.
In noncentrosymmetric superconductors (NCSs), the conversion of a charge current into spin magnetization - the so called magnetoelectric effect - is the direct indicator of the unconventional, mixed-parity order parameter. This paper proposes a schem
We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductor by changing the surface (interface) misorientation angle of chiral superconductors. We obtain analytical formul
We propose a scheme to detect the Majorana-zero-mode-induced crossed Andreev reflection by measuring tunneling current directly. In this scheme a metallic ring structure is utilized to separate electron and hole signals. Since tunneling electrons and
Sub-gap transport properties of a quantum dot (QD) coupled to two superconducting and one metallic leads are studied theoretically, solving the time-dependent equation of motion by the Laplace transform technique. We focus on time-dependent response
We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasip