ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the two-body and three-body bound states in ultracold atomic mixtures with one of the atoms subjected to an isotropic spin-orbit (SO) coupling. We consider a system of two identical fermions interacting with one SO coupled atom. It is found that there can exist two types of three-body bound states, Efimov trimers and universal trimers. The Efimov trimers are energetically less favored by the SO coupling, which will finally merge into the atom-dimer threshold as increasing the SO coupling strength. Nevertheless, these trimers exhibit a new kind of discrete scaling law incorporating the SO coupling effect. On the other hand, the universal trimers are more favored by the SO coupling. They can be induced at negative s-wave scattering lengths and with smaller mass ratios than those without SO coupling. These results are obtained by both the Born-Oppenheimer approximation and exact solutions from three-body equations.
In this letter we address the issue how synthetic spin-orbit (SO) coupling can strongly affect three-body physics in ultracold atomic gases. We consider a system which consists of three fermionic atoms, including two spinless heavy atoms and one spin -1/2 light atom subjected to an isotropic SO coupling. We find that SO coupling can induce universal three-body bound states with negative s-wave scattering length at a smaller mass ratio, where no trimer bound state can exist if in the absence of SO coupling. The energies of these trimers are independent of high-energy cutoff, and therefore they are universal ones. Moreover, the resulting atom-dimer resonance can be effectively controlled by SO coupling strength. Our results can be applied to systems like ${}^6$Li and ${}^{40}$K mixture.
82 - Ran Qi , Zhe-Yu Shi , Hui Zhai 2012
It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named as dipolar interaction induced resonaces (DIIR). In this letter, we study zero-temperature ma ny-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range corrections, despite of the anisotropic nature of dipolar interaction. The pairing energy is as strong as a unitary Fermi gas nearby a magnetic Feshbach resonance. In the high density regime, the anisotropic effect plays an important role. We find phase transitions from singlet pairing to a state with mixed singlet and triplet pairing, and then from mixed pairing to pure triplet pairing. The state with mixed pairing spontaneously breaks the time-reversal symmetry.
82 - Zhe-Yu Shi , Ran Qi , Hui Zhai 2011
We show that s-wave scattering resonances induced by dipolar interactions in a polar molecular gas have a universal large and positive effective range, which is very different from Feshbach resonances realized in cold atoms before, where the effectiv e range is either negligible or negative. Such a difference has important consequence in many-body physics. At high temperature regime, a positive effective range gives rise to stronger repulsive interaction energy for positive scattering length, and weaker attractive interaction energy for negative scattering length. While at low-temperatures, we study polaron problem formed by single impurity molecule, and we find that the polaron binding energy increases at the BEC side and decreases at the BCS side. All these effects are in opposite to narrow Feshbach resonances where the effective range is negative.
77 - Yu Shi 2009
We examine the practical feasibility of the experimental realization of the so-called entangled Bose-Einstein condensation (BEC), occurring in an entangled state of two atoms of different species. We demonstrate that if the energy gap remains vanishi ng, the entangled BEC persists as the ground state of the concerned model in a wide parameter regime. We establish the experimental accessibility of the isotropic point of the effective parameters, in which the entangled BEC is the exact ground state, as well as the consistency with the generalized Gross-Pitaevskii equations. The transition temperature is estimated. Possible experimental implementations are discussed in detail.
96 - Yu Shi 2008
Quantum computing in terms of geometric phases, i.e. Berry or Aharonov-Anandan phases, is fault-tolerant to a certain degree. We examine its implementation based on Zeeman coupling with a rotating field and isotropic Heisenberg interaction, which des cribe NMR and can also be realized in quantum dots and cold atoms. Using a novel physical representation of the qubit basis states, we construct $pi/8$ and Hadamard gates based on Berry and Aharonov-Anandan phases. For two interacting qubits in a rotating field, we find that it is always impossible to construct a two-qubit gate based on Berry phases, or based on Aharonov-Anandan phases when the gyromagnetic ratios of the two qubits are equal. In implementing a universal set of quantum gates, one may combine geometric $pi/8$ and Hadamard gates and dynamical $sqrt{rm SWAP}$ gate.
65 - Yu Shi , Yue-Liang Wu 2008
Quantum teleportation using neutral pseudoscalar mesons shows novel connections between particle physics and quantum information. The projection basis, which is crucial in the teleportation process, is determined by the conservation laws of particle physics, and is different from the Bell basis, as in the usual case. Here we show that one can verify the teleportation process by CP measurement. This method significantly simplifies the high energy quantum teleportation protocol. Especially, it is rigorous, and is independent of whether CP is violated in weak decays. This method can also be applied to general verification of Einstein-Podolsky-Rosen correlations in particle physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا