ﻻ يوجد ملخص باللغة العربية
We study the two-body and three-body bound states in ultracold atomic mixtures with one of the atoms subjected to an isotropic spin-orbit (SO) coupling. We consider a system of two identical fermions interacting with one SO coupled atom. It is found that there can exist two types of three-body bound states, Efimov trimers and universal trimers. The Efimov trimers are energetically less favored by the SO coupling, which will finally merge into the atom-dimer threshold as increasing the SO coupling strength. Nevertheless, these trimers exhibit a new kind of discrete scaling law incorporating the SO coupling effect. On the other hand, the universal trimers are more favored by the SO coupling. They can be induced at negative s-wave scattering lengths and with smaller mass ratios than those without SO coupling. These results are obtained by both the Born-Oppenheimer approximation and exact solutions from three-body equations.
Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the heteronuclear case. In previo
Quantum information platforms made great progress in the control of many-body entanglement and the implementation of quantum error correction, but it remains a challenge to realize both in the same setup. Here, we propose a mixture of two ultracold a
We show that four heavy fermions interacting resonantly with a lighter atom (4+1 system) become Efimovian at mass ratio 13.279(2), which is smaller than the corresponding 2+1 and 3+1 thresholds. We thus predict the five-body Efimov effect for this sy
The Zitterbewegung effect in spin-orbit coupled spin-1 cold atoms is investigated in the presence of the Zeeman field and a harmonic trap. It is shown that the Zeeman field and the harmonic trap have significant effect on the Zitterbewegung oscillato
We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dim