ترغب بنشر مسار تعليمي؟ اضغط هنا

s-Wave Scattering Resonances Induced by Dipolar Interactions of Polar Molecules

136   0   0.0 ( 0 )
 نشر من قبل Hui Zhai
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that s-wave scattering resonances induced by dipolar interactions in a polar molecular gas have a universal large and positive effective range, which is very different from Feshbach resonances realized in cold atoms before, where the effective range is either negligible or negative. Such a difference has important consequence in many-body physics. At high temperature regime, a positive effective range gives rise to stronger repulsive interaction energy for positive scattering length, and weaker attractive interaction energy for negative scattering length. While at low-temperatures, we study polaron problem formed by single impurity molecule, and we find that the polaron binding energy increases at the BEC side and decreases at the BCS side. All these effects are in opposite to narrow Feshbach resonances where the effective range is negative.



قيم البحث

اقرأ أيضاً

We determine the quantum ground state of dipolar bosons in a quasi-one-dimensional optical lattice and interacting via $s$-wave scattering. The Hamiltonian is an extended Bose-Hubbard model which includes hopping terms due to the interactions. We ide ntify the parameter regime for which the coefficients of the interaction-induced hopping terms become negative. For these parameters we numerically determine the phase diagram for a canonical ensemble and by means of density matrix renormalization group. We show that at sufficiently large values of the dipolar strength there is a quantum interference between the tunneling due to single-particle effects and the one due to the interactions. Because of this phenomenon, incompressible phases appear at relatively large values of the single-particle tunneling rates. This quantum interference cuts the phase diagram into two different, disconnected superfluid phases. In particular, at vanishing kinetic energy, the phase is always superfluid with a staggered superfluid order parameter. These dynamics emerge from quantum interference phenomena between quantum fluctuations and interactions and shed light into their role in determining the thermodynamic properties of quantum matter.
We demonstrate microwave dressing on ultracold, fermionic ${}^{23}$Na${}^{40}$K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding three times the $s$-wave unitarity limit. The origin of these collisions is t he resonant alignment of the approaching molecules dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channels calculations that agree well with the experimentally observed collision rates. While collisions are observed here as laser-induced loss, microwave dressing on chemically stable molecules trapped in box potentials may enable the creation of strongly interacting dipolar gases of molecules.
258 - Lars Bonnes , Stefan Wessel 2011
We explore the phase diagram of ultracold bosonic polar molecules confined to a planar optical lattice of triangular geometry. External static electric and microwave fields can be employed to tune the effective interactions between the polar molecule s into a regime of extended two- and three-body repulsions of comparable strength, leading to a rich quantum phase diagram. In addition to various solid phases, an extended supersolid phase is found to persist deep into the three-body dominated regime. While three-body interactions break particle-hole symmetry explicitly, a characteristic supersolid-supersolid quantum phase transition is observed, which indicates the restoration of particle-hole symmetry at half-filling. We revisit the spatial structure of the supersolid at this filling, regarding the existence of a further supersolid phase with three inequivalent sublattices, and provide evidence that this state is excluded also at finite temperatures.
We show that recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological $p$-wave superfluid of microwave-dressed polar molec ules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer $p$-wave superfluid of polar molecules in a bilayer geometry.
111 - Ran Qi , Hui Zhai 2011
We study the two-body problem with a spatially modulated interaction potential using a two-channel model, in which the inter-channel coupling is provided by an optical standing wave and its strength modulates periodically in space. As the modulation amplitudes increases, there will appear a sequence of bound states. Part of them will cause divergence of the effective scattering length, defined through the phase shift in the asymptotic behavior of scattering states. We also discuss how the local scattering length, defined through short-range behavior of scattering states, modulates spatially in different regimes. These results provide a theoretical guideline for new control technique in cold atom toolbox, in particular, for alkali-earth-(like) atoms where the inelastic loss is small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا