ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid developments of quantum information technology show promising opportunities for simulating quantum field theory in near-term quantum devices. In this work, we formulate the theory of (time-dependent) variational quantum simulation, explicitly d esigned for quantum simulation of quantum field theory. We develop hybrid quantum-classical algorithms for crucial ingredients in particle scattering experiments, including encoding, state preparation, and time evolution, with several numerical simulations to demonstrate our algorithms in the 1+1 dimensional $lambda phi^4$ quantum field theory. These algorithms could be understood as near-term analogs of the Jordan-Lee-Preskill algorithm, the basic algorithm for simulating quantum field theory using universal quantum devices. Our contribution also includes a bosonic version of the Unitary Coupled Cluster ansatz with physical interpretation in quantum field theory, a discussion about the subspace fidelity, a comparison among different bases in the 1+1 dimensional $lambda phi^4$ theory, and the spectral crowding in the quantum field theory simulation.
126 - Wei Dai , Boyeong Woo , Siyu Liu 2021
Direct automatic segmentation of objects from 3D medical imaging, such as magnetic resonance (MR) imaging, is challenging as it often involves accurately identifying a number of individual objects with complex geometries within a large volume under i nvestigation. To address these challenges, most deep learning approaches typically enhance their learning capability by substantially increasing the complexity or the number of trainable parameters within their models. Consequently, these models generally require long inference time on standard workstations operating clinical MR systems and are restricted to high-performance computing hardware due to their large memory requirement. Further, to fit 3D dataset through these large models using limited computer memory, trade-off techniques such as patch-wise training are often used which sacrifice the fine-scale geometric information from input images which could be clinically significant for diagnostic purposes. To address these challenges, we present a compact convolutional neural network with a shallow memory footprint to efficiently reduce the number of model parameters required for state-of-art performance. This is critical for practical employment as most clinical environments only have low-end hardware with limited computing power and memory. The proposed network can maintain data integrity by directly processing large full-size 3D input volumes with no patches required and significantly reduces the computational time required for both training and inference. We also propose a novel loss function with extra shape constraint to improve the accuracy for imbalanced classes in 3D MR images.
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it in to smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.
How to strategically allocate the available vaccines is a crucial issue for pandemic control. In this work, we propose a mathematical framework for optimal stabilizing vaccine allocation, where our goal is to send the infections to zero as soon as po ssible with a fixed number of vaccine doses. This framework allows us to efficiently compute the optimal vaccine allocation policy for general epidemic spread models including SIS/SIR/SEIR and a new model of COVID-19 transmissions. By fitting the real data in New York State to our framework, we found that the optimal stabilizing vaccine allocation policy suggests offering vaccines priority to locations where there are more susceptible people and where the residents spend longer time outside the home. Besides, we found that offering vaccines priority to young adults (20-29) and middle-age adults (20-44) can minimize the cumulative infected cases and the death cases. Moreover, we compared our method with five age-stratified strategies in cite{bubar2021model} based on their epidemics model. We also found its better to offer vaccine priorities to young people to curb the disease and minimize the deaths when the basic reproduction number $R_0$ is moderately above one, which describes the most world during COVID-19. Such phenomenon has been ignored in cite{bubar2021model}.
127 - Mengyu Liu , Hujun Yin 2021
The spatial attention mechanism captures long-range dependencies by aggregating global contextual information to each query location, which is beneficial for semantic segmentation. In this paper, we present a sparse spatial attention network (SSANet) to improve the efficiency of the spatial attention mechanism without sacrificing the performance. Specifically, a sparse non-local (SNL) block is proposed to sample a subset of key and value elements for each query element to capture long-range relations adaptively and generate a sparse affinity matrix to aggregate contextual information efficiently. Experimental results show that the proposed approach outperforms other context aggregation methods and achieves state-of-the-art performance on the Cityscapes, PASCAL Context and ADE20K datasets.
Few-Shot Event Classification (FSEC) aims at developing a model for event prediction, which can generalize to new event types with a limited number of annotated data. Existing FSEC studies have achieved high accuracy on different benchmarks. However, we find they suffer from trigger biases that signify the statistical homogeneity between some trigger words and target event types, which we summarize as trigger overlapping and trigger separability. The biases can result in context-bypassing problem, i.e., correct classifications can be gained by looking at only the trigger words while ignoring the entire context. Therefore, existing models can be weak in generalizing to unseen data in real scenarios. To further uncover the trigger biases and assess the generalization ability of the models, we propose two new sampling methods, Trigger-Uniform Sampling (TUS) and COnfusion Sampling (COS), for the meta tasks construction during evaluation. Besides, to cope with the context-bypassing problem in FSEC models, we introduce adversarial training and trigger reconstruction techniques. Experiments show these techniques help not only improve the performance, but also enhance the generalization ability of models.
The risk of Parkinsons disease (PD) is extremely serious, and PD speech recognition is an effective method of diagnosis nowadays. However, due to the influence of the disease stage, corpus, and other factors on data collection, the ability of every s amples within one subject to reflect the status of PD vary. No samples are useless totally, and not samples are 100% perfect. This characteristic means that it is not suitable just to remove some samples or keep some samples. It is necessary to consider the sample transformation for obtaining high quality new samples. Unfortunately, existing PD speech recognition methods focus mainly on feature learning and classifier design rather than sample learning, and few methods consider the sample transformation. To solve the problem above, a PD speech sample transformation algorithm based on multitype reconstruction operators is proposed in this paper. The algorithm is divided into four major steps. Three types of reconstruction operators are designed in the algorithm: types A, B and C. Concerning the type A operator, the original dataset is directly reconstructed by designing a linear transformation to obtain the first dataset. The type B operator is designed for clustering and linear transformation of the dataset to obtain the second new dataset. The third operator, namely, the type C operator, reconstructs the dataset by clustering and convolution to obtain the third dataset. Finally, the base classifier is trained based on the three new datasets, and then the classification results are fused by decision weighting. In the experimental section, two representative PD speech datasets are used for verification. The results show that the proposed algorithm is effective. Compared with other algorithms, the proposed algorithm achieves apparent improvements in terms of classification accuracy.
326 - Hongyi Guan , Ying Sun , Hanyu Liu 2021
Pressurized hydrogen-rich compounds, which could be viewed as precompressed metallic hydrogen, exhibit high superconductivity, thereby providing a viable route toward the discovery of high-temperature superconductors. Of particular interest is to sea rch for high-temperature superconductors with low stable pressure in terms of pressure-stabilized hydrides. In this work, with the aim of obtaining high-temperature superconducting compounds at low pressure, we attempt to study the doping effects for high-temperature superconductive $ mathrm{H_3S} $ with supercells up to 64 atoms using first principle electronic structure simulations. As a result of various doping, we found that Na doping for $ mathrm{H_3S} $ could lower the dynamically stable pressure by 40 GPa. The results also indicate P doping could enhance the superconductivity of $ mathrm{H_3S} $ system, which is in agreement with previous calculations. Moreover, our work proposed an approach that could reasonably estimate the superconducting critical temperature ($ T_{c} $) of a compound containing a large number of atoms, saving the computational cost significantly for large-scale elements-doping superconductivity simulations.
232 - Boying Li , Yuan Huang , Zeyu Liu 2021
Self-supervised monocular depth estimation has achieved impressive performance on outdoor datasets. Its performance however degrades notably in indoor environments because of the lack of textures. Without rich textures, the photometric consistency is too weak to train a good depth network. Inspired by the early works on indoor modeling, we leverage the structural regularities exhibited in indoor scenes, to train a better depth network. Specifically, we adopt two extra supervisory signals for self-supervised training: 1) the Manhattan normal constraint and 2) the co-planar constraint. The Manhattan normal constraint enforces the major surfaces (the floor, ceiling, and walls) to be aligned with dominant directions. The co-planar constraint states that the 3D points be well fitted by a plane if they are located within the same planar region. To generate the supervisory signals, we adopt two components to classify the major surface normal into dominant directions and detect the planar regions on the fly during training. As the predicted depth becomes more accurate after more training epochs, the supervisory signals also improve and in turn feedback to obtain a better depth model. Through extensive experiments on indoor benchmark datasets, the results show that our network outperforms the state-of-the-art methods. The source code is available at https://github.com/SJTU-ViSYS/StructDepth .
158 - Yu Liu , Panyue Zhou 2021
Recently, Wang, Wei and Zhang define the recollement of extriangulated categories, which is a generalization of both recollement of abelian categories and recollement of triangulated categories. For a recollement $(mathcal A ,mathcal B,mathcal C)$ of extriangulated categories, we show that $n$-tilting (resp. $n$-cotilting) subcategories in $mathcal A$ and $mathcal C$ can be glued to get $n$-tilting (resp. $n$-cotilting) subcategories in $mathcal B$ under certain conditions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا