ﻻ يوجد ملخص باللغة العربية
Self-supervised monocular depth estimation has achieved impressive performance on outdoor datasets. Its performance however degrades notably in indoor environments because of the lack of textures. Without rich textures, the photometric consistency is too weak to train a good depth network. Inspired by the early works on indoor modeling, we leverage the structural regularities exhibited in indoor scenes, to train a better depth network. Specifically, we adopt two extra supervisory signals for self-supervised training: 1) the Manhattan normal constraint and 2) the co-planar constraint. The Manhattan normal constraint enforces the major surfaces (the floor, ceiling, and walls) to be aligned with dominant directions. The co-planar constraint states that the 3D points be well fitted by a plane if they are located within the same planar region. To generate the supervisory signals, we adopt two components to classify the major surface normal into dominant directions and detect the planar regions on the fly during training. As the predicted depth becomes more accurate after more training epochs, the supervisory signals also improve and in turn feedback to obtain a better depth model. Through extensive experiments on indoor benchmark datasets, the results show that our network outperforms the state-of-the-art methods. The source code is available at https://github.com/SJTU-ViSYS/StructDepth .
In the recent years, many methods demonstrated the ability of neural networks tolearn depth and pose changes in a sequence of images, using only self-supervision as thetraining signal. Whilst the networks achieve good performance, the often over-look
Self-supervised depth estimation has drawn much attention in recent years as it does not require labeled data but image sequences. Moreover, it can be conveniently used in various applications, such as autonomous driving, robotics, realistic navigati
We present a novel algorithm for self-supervised monocular depth completion. Our approach is based on training a neural network that requires only sparse depth measurements and corresponding monocular video sequences without dense depth labels. Our s
We present a generalised self-supervised learning approach for monocular estimation of the real depth across scenes with diverse depth ranges from 1--100s of meters. Existing supervised methods for monocular depth estimation require accurate depth me
Depth estimation, as a necessary clue to convert 2D images into the 3D space, has been applied in many machine vision areas. However, to achieve an entire surrounding 360-degree geometric sensing, traditional stereo matching algorithms for depth esti