ترغب بنشر مسار تعليمي؟ اضغط هنا

Behind the Scenes: An Exploration of Trigger Biases Problem in Few-Shot Event Classification

299   0   0.0 ( 0 )
 نشر من قبل Peiyi Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Few-Shot Event Classification (FSEC) aims at developing a model for event prediction, which can generalize to new event types with a limited number of annotated data. Existing FSEC studies have achieved high accuracy on different benchmarks. However, we find they suffer from trigger biases that signify the statistical homogeneity between some trigger words and target event types, which we summarize as trigger overlapping and trigger separability. The biases can result in context-bypassing problem, i.e., correct classifications can be gained by looking at only the trigger words while ignoring the entire context. Therefore, existing models can be weak in generalizing to unseen data in real scenarios. To further uncover the trigger biases and assess the generalization ability of the models, we propose two new sampling methods, Trigger-Uniform Sampling (TUS) and COnfusion Sampling (COS), for the meta tasks construction during evaluation. Besides, to cope with the context-bypassing problem in FSEC models, we introduce adversarial training and trigger reconstruction techniques. Experiments show these techniques help not only improve the performance, but also enhance the generalization ability of models.



قيم البحث

اقرأ أيضاً

Event detection has long been troubled by the emph{trigger curse}: overfitting the trigger will harm the generalization ability while underfitting it will hurt the detection performance. This problem is even more severe in few-shot scenario. In this paper, we identify and solve the trigger curse problem in few-shot event detection (FSED) from a causal view. By formulating FSED with a structural causal model (SCM), we found that the trigger is a confounder of the context and the result, which makes previous FSED methods much easier to overfit triggers. To resolve this problem, we propose to intervene on the context via backdoor adjustment during training. Experiments show that our method significantly improves the FSED on ACE05, MAVEN and KBP17 datasets.
Identifying events and mapping them to pre-defined event types has long been an important natural language processing problem. Most previous work has been heavily relying on labor-intensive and domain-specific annotations while ignoring the semantic meaning contained in the labels of the event types. As a result, the learned models cannot effectively generalize to new domains, where new event types could be introduced. In this paper, we propose an unsupervised event extraction pipeline, which first identifies events with available tools (e.g., SRL) and then automatically maps them to pre-defined event types with our proposed unsupervised classification model. Rather than relying on annotated data, our model matches the semantics of identified events with those of event type labels. Specifically, we leverage pre-trained language models to contextually represent pre-defined types for both event triggers and arguments. After we map identified events to the target types via representation similarity, we use the event ontology (e.g., argument type Victim can only appear as the argument of event type Attack) as global constraints to regularize the prediction. The proposed approach is shown to be very effective when tested on the ACE-2005 dataset, which has 33 trigger and 22 argument types. Without using any annotation, we successfully map 83% of the triggers and 54% of the arguments to the correct types, almost doubling the performance of previous zero-shot approaches.
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a smal l support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.
This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and effic ient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
123 - Xin Cong , Shiyao Cui , Bowen Yu 2020
Event detection tends to struggle when it needs to recognize novel event types with a few samples. The previous work attempts to solve this problem in the identify-then-classify manner but ignores the trigger discrepancy between event types, thus suf fering from the error propagation. In this paper, we present a novel unified model which converts the task to a few-shot tagging problem with a double-part tagging scheme. To this end, we first propose the Prototypical Amortized Conditional Random Field (PA-CRF) to model the label dependency in the few-shot scenario, which approximates the transition scores between labels based on the label prototypes. Then Gaussian distribution is introduced for modeling of the transition scores to alleviate the uncertain estimation resulting from insufficient data. Experimental results show that the unified models work better than existing identify-then-classify models and our PA-CRF further achieves the best results on the benchmark dataset FewEvent. Our code and data are available at http://github.com/congxin95/PA-CRF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا