ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear electric dipole moments of $^{3}He$ and $^{3}H$ are calculated using Time Reversal Invariance Violating (TRIV) potentials based on the meson exchange theory, as well as the ones derived by using pionless and pionful effective field theories, with nuclear wave functions obtained by solving Faddeev equations in configuration space for the complete Hamiltonians comprising both TRIV and realistic strong interactions. The obtained results are compared with the previous calculations of $^{3}He$ EDM and with time reversal invariance violating effects in neutron-deuteron scattering.
Time reversal invariance violating (TRIV) effects in neutron scattering are very important in a search for new physics, being complementary to neutron and atomic electric dipole moment measurements. In this relation, a sensitivity of TRIV observables to different models of CP-violation and their dependencies on nuclear structure, which can lead to new enhancement factors, are discussed.
Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functio ns, obtained by solving three-body Faddeev equations in configuration space.
Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا