ﻻ يوجد ملخص باللغة العربية
Time reversal invariance violating (TRIV) effects in neutron scattering are very important in a search for new physics, being complementary to neutron and atomic electric dipole moment measurements. In this relation, a sensitivity of TRIV observables to different models of CP-violation and their dependencies on nuclear structure, which can lead to new enhancement factors, are discussed.
Apart from the $pd$ reaction also the scattering of antiprotons with transversal polarization $p_y^p$ on deuterons with tensor polarization $P_{xz}$ provides a null-test signal for time-reversal-invariance violating but parity conserving effects. Ass
Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction
Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functio
Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on had
We apply the large-$N_c$ expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-$N_c$ counting are constructed. For the TV and parity-viol