ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Reversal Invariance Violating and Parity Conserving effects in Neutron Deuteron Scattering

146   0   0.0 ( 0 )
 نشر من قبل Vladimir Gudkov
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.



قيم البحث

اقرأ أيضاً

Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on had ronic wave functions, obtained by solving three-body Faddeev-Merkuriev equations in configuration space with realistic potentials.
Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed.
Apart from the $pd$ reaction also the scattering of antiprotons with transversal polarization $p_y^p$ on deuterons with tensor polarization $P_{xz}$ provides a null-test signal for time-reversal-invariance violating but parity conserving effects. Ass uming that the time-reversal-invariance violating $bar NN$ interaction contains the same operator structure as the $NN$ interaction, we discuss the energy dependence of the null-test signal in $bar pd$ scattering on the basis of a calculation within the spin-dependent Glauber theory at beam energies of 50-300 MeV.
We apply the large-$N_c$ expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-$N_c$ counting are constructed. For the TV and parity-viol ating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which however are suppressed by 1/$N_c$ compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral EFT potential in the TV parity-violating case, leads to large-$N_c$ scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
A novel test of time-reversal invariance in proton-deuteron scattering is planned as an internal target transmission experiment at the cooler synchrotron COSY. The P-even, T-odd observable is the polarization correlation $A_{y,xz}$ of the total cross section measured using a polarized internal proton beam (polarization $p_y$) and an internal polarized deuterium target (tensor polarization $p_{xz}$). Measuring this observable is a true null test of time reversal invariance and therefore allows to reach a high accuracy. Sufficient luminosity can be obtained using a window-less storage cell placed on the axis of the proton beam. Tensor polarized atoms are produced in an atomic beam source based on Stern-Gerlach separation in permanent sextupole magnets and adiabatic high frequency transitions. The total cross section correlation is measured by monitoring the beam transmission in the COSY storage ring mode of operation. The proton beam momentum will be in the range 2-3 GeV/c. This momentum is ideally suited to test possible short range contributions, i.e. natural parity charged $rho$-type and unnatural parity $a_1$-type meson exchange contributions. The feasibility of the experiment, systematic errors and the expected accuracy are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا