ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by a novel origin of transverse single spin asymmetry (SSA) in semi-inclusive Deep Inelastic Scattering (SIDIS) uncovered by some of us, we quantitatively investigate its impact on the theoretical understanding of the mechanism responsible for SSA. This new contribution from the quark-initiated channel first appears in two-loop perturbation theory and involves the $g_T(x)$ distribution. We point out another entirely analogous piece from the gluon-initiated channel proportional to the gluon helicity distribution $Delta G(x)$. Both contributions are solely expressed in terms of twist-two polarized parton distribution functions and twist-two fragmentation functions in the Wandzura-Wilczek approximation, such that they can be unambiguously evaluated without introducing free parameters. We make predictions for measurements of the asymmetries $A_{UT}$ at the future Electron-Ion Collider (EIC), and find that $A_{UT}$ associated with the $sin (phi_h-phi_S)$, $sin phi_S$ and $sin (2phi_h-phi_S)$ harmonics can reach up to 1-2% even at the top EIC energy.
We investigate the impact of soft gluon resummation on the azimuthal angle correlation between the total and relative momenta of two energetic final state particles (jets). We show that the initial and final state radiations induce sizable $cos(phi)$ and $cos (2phi)$ asymmetries in single jet and dijet events, respectively. We numerically evaluate the magnitude of these asymmetries for a number of processes in collider experiments, including diffractive dijet and dilepton production in ultraperipheral $pA$ and $AA$ collisions, inclusive and diffractive dijet production at the EIC and inclusive dijet production in $pp$ collisions at the LHC. In particular, the $cos (2phi)$ asymmetry of perturbative origin can dominate over the primordial asymmetry due to the linearly polarized gluon distribution.
We present a model of exclusive $phi$-meson lepto-production $ep to epphi$ near threshold which features the strangeness gravitational form factors of the proton. We argue that the shape of the differential cross section $dsigma/dt$ is a sensitive probe of the strangeness D-term of the proton.
We investigate the effect of soft gluon radiations on the azimuthal angle correlation between the total and relative momenta of two jets in inclusive and exclusive dijet processes. We show that the final state effect induces a sizable $cos(2phi)$ ani sotropy due to gluon emissions near the jet cones. The phenomenological consequences of this observation are discussed for various collider experiments, including diffractive processes in ultraperipheral $pA$ and $AA$ collisions, inclusive and diffractive dijet production at the EIC, and inclusive dijet in $pp$ and $AA$ collisions at the LHC.
Motivated by the desire to understand the nucleon mass structure in terms of light-cone distributions, we introduce the twist-four parton distribution function $F(x)$ whose first moment is the gluon condensate in the nucleon. We present the equation of motion relations for $F(x)$ and discuss the possible existence of the delta function (`zero mode) contribution at $x=0$. We also perform one-loop calculations for quark and gluon targets.
94 - Yoshitaka Hatta 2020
I give a brief overview of the science cases of the Electron-Ion Collider (EIC) with a particular emphasis on the connections to the physics of ultrarelativistic heavy-ion collisions.
It is commonly believed that the Sivers function has uniquely to do with processes involving a transversely polarized nucleon. In this paper we show that it is not necessarily the case. We demonstrate that exclusive pion production in $un$polarized e lectron-proton scattering in the forward region is a direct probe of the gluon Sivers function due to its connection to the QCD Odderon.
78 - Yoshitaka Hatta 2019
We study sub-threshold heavy quarkonium ($J/psi$ and $Upsilon$) photo-productions in $gamma A$ collisions as an independent test of the universality of the nucleon-nucleon short range correlation (SRC) in nuclear scattering processes. Just below the $gamma p$ threshold, the cross section is dominated by the mean field contribution of nucleons inside the nucleus. The SRC contributions start to dominate at lower photon energies, depending on the fraction of the SRC pairs in the target nucleus. We give an estimate of the cross sections in the sub-threshold region both for $J/psi$ and $Upsilon$. This may be helpful for future measurements at JLab as well as at the Electron-Ion Collider in the U.S., and especially in China.
We find a novel mechanism for generating transverse single-spin asymmetry (SSA) in semi-inclusive deep inelastic scattering, distinct from the known ones which involve the Sivers and Collins functions, or their collinear twist-three counterparts. It is demonstrated that a phase needed for SSA can be produced purely within a parton-level cross section starting at two loops. We identify the complete set of two-loop diagrams for SSA, and discuss their gauge invariance and collinear factorization which features the $g_T$ distribution function. In the $k_T$ factorization framework, many more sources for SSA exist, and contributions from all possible two-parton transverse-momentum-dependent parton distribution functions are presented up to two loops and twist three.
We confront the theoretical result of single spin asymmetry (SSA) $A_N$ in forward $pA$ collisions $p^uparrow A to hX$ including the gluon saturation effect with the recent preliminary experimental data from the PHENIX and STAR collaborations at RHIC . While we find overall reasonable agreement with the STAR data, our results indicate that the strong nuclear suppression of the asymmetry $A_Nsim A^{-1/3}$ observed by the PHENIX collaboration cannot be explained within the present understanding of this problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا