ترغب بنشر مسار تعليمي؟ اضغط هنا

Single spin asymmetry in forward $pA$ collisions: Phenomenology at RHIC

52   0   0.0 ( 0 )
 نشر من قبل Sanjin Beni\\'c
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We confront the theoretical result of single spin asymmetry (SSA) $A_N$ in forward $pA$ collisions $p^uparrow A to hX$ including the gluon saturation effect with the recent preliminary experimental data from the PHENIX and STAR collaborations at RHIC. While we find overall reasonable agreement with the STAR data, our results indicate that the strong nuclear suppression of the asymmetry $A_Nsim A^{-1/3}$ observed by the PHENIX collaboration cannot be explained within the present understanding of this problem.

قيم البحث

اقرأ أيضاً

Global perturbative QCD analyses, based on large data sets from e-p and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (n PDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision programme at the LHC, including a rapidity scan, would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.
The longitudinal asymmetry arises in relativistic heavy ion collisions due to fluctuation in the number of participating nucleons. This asymmetry causes a shift in the center of mass rapidity of the participant zone. The rapidity shift as well as the longitudinal asymmetry have been found to be significant at the top LHC energy for collisions of identical nuclei. We study the longitudinal asymmetry and its effect on charged particle rapidity distribution and anisotropic flow parameters at relatively lower RHIC energies using a model calculation. The rapidity shift is found to be more pronounced for peripheral collisions, smaller systems and also for lower beam energies due to longitudinal asymmetry. A detailed study has been done by associating the average rapidity shift to a polynomial relation where the coefficients of this polynomial characterize the effect of the asymmetry. We show that the rapidity shift may affect observables significantly at RHIC energies.
79 - M. H. Kim , B. Hong , Y. Goto 2019
Transverse single spin asymmetry, $A_{N}$, of very forward $pi^{0}$ production from polarized $p + p$ collisions provides new information toward an understanding of its production mechanism. $A_{N}$ of forward $pi^{0}$ in the pseudorapidity region of $3 < eta < 4$ has been described by the partonic structure of the proton in the perturbative QCD framework. However, recent data indicates a potential contribution from not only partonic but also diffractive interactions. In order to provide a new insight on the origin of the $A_{N}$, we measured the very forward $pi^{0}$ production in the pseudorapidity region of $6 < eta$ from $sqrt{s}$ = 510 GeV polarized $p + p$ collisions at RHIC in 2017. We report our measurement of the very forward $pi^{0}$ over the transverse momentum range of $0 < p_{T} < 1$ GeV/$c$ and the preliminary result.
99 - M.H. Kim , O. Adriani , E. Berti 2020
Transverse single-spin asymmetries of very forward neutral pions generated in polarized $p + p$ collisions allow us to understand the production mechanism in terms of perturbative and non-perturbative strong interactions. During 2017 the RHICf Collab oration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized $p$+$p$ collisions at $sqrt{s}$ = 510 GeV. The large non-zero asymmetries increasing both in longitudinal momentum fraction $x_{F}$ and transverse momentum $p_{T}$ have been observed at low transverse momentum $p_{T} < 1$ GeV/$c$ for the first time at this collision energy. The asymmetries show an approximate $x_{F}$ scaling in the $p_{T}$ region where non-perturbative processes are expected to dominate. A non-negligible contribution from soft processes may be necessary to explain the nonzero neutral pion asymmetries.
We analyze $pA$ interactions at ultra-high energies within the semiclassical approximation for high energy processes accounting for the diffractive processes and a rapid increase with the incident energy of the coherence length. The fluctuations of t he strength of interaction expected in QCD and momentum conservation are taken into account also. We evaluate the number of wounded nucleons in soft and hard processes, the multiplicity of jets in the proton fragmentation region as a function of the variance of the distribution over the interaction strengths directly measured in forward diffractive $pN$ scattering for RHIC and LHC energies. We argue that these results could be used to test whether parton configurations containing a parton carrying the $xge 0.5$ fraction of the projectile momentum interact significantly weaker than on average. We also study leading twist shadowing and the EMC effect for superdense nuclear matter configurations probed in the events with larger than average number of wounded nucleons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا