ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-threshold $J/psi$ and $Upsilon$ Production in $gamma A$ Collisions

79   0   0.0 ( 0 )
 نشر من قبل Feng Yuan
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Yoshitaka Hatta




اسأل ChatGPT حول البحث

We study sub-threshold heavy quarkonium ($J/psi$ and $Upsilon$) photo-productions in $gamma A$ collisions as an independent test of the universality of the nucleon-nucleon short range correlation (SRC) in nuclear scattering processes. Just below the $gamma p$ threshold, the cross section is dominated by the mean field contribution of nucleons inside the nucleus. The SRC contributions start to dominate at lower photon energies, depending on the fraction of the SRC pairs in the target nucleus. We give an estimate of the cross sections in the sub-threshold region both for $J/psi$ and $Upsilon$. This may be helpful for future measurements at JLab as well as at the Electron-Ion Collider in the U.S., and especially in China.



قيم البحث

اقرأ أيضاً

We study inclusive heavy quarkonium production with definite polarizations in polarized proton-proton collisions using the non-relativistic QCD color-octet mechanism. We present results for rapidity distributions of cross sections and spin asymmetrie s for the production of J/psi and psi with specific polarizations in polarized p-p collisions at sqrt s = 200 GeV and 500 GeV at the RHIC within the PHENIX detector acceptance range.
239 - Igor Strakovsky , 2019
The quality of the recent GlueX $J/psi $ photoproduction data from Hall~D at Jefferson Laboratory, and the proximity of the data to the energy threshold, gives access to a variety of interesting physics aspects. As an example, an estimation of the $J /psi$-nucleon scattering length $alpha_{J/psi p}$ is provided within the vector meson dominance model. It results in $|alpha_{J/psi p}| = (3.08pm 0.55 ({rm stat.}) pm 0.45 ({rm syst.}))$~mfm.
The production mechanism of quarkonia states in hadronic collisions is still to be understood by the scientific community. In high-multiplicity $p+p$ collisions, Underlying Event (UE) observables are of major interest. The Multi-Parton Interactions ( MPI) is a UE observable, where several interactions occur at the partonic level in a single $p+p$ event. This leads to dependence of particle production on event multiplicity. If the MPI occurs in a harder scale, there will be a correlation between the yield of quarkonia and total charged particle multiplicity. The ALICE experiment at the Large Hadron Collider (LHC) in $p+p$ collisions at $sqrt{s}$ = 7 and 13 TeV has observed an approximate linear increase of relative $J/psi$ yield ($frac{dN_{J/psi}/dy}{<dN_{J/psi}/dy>}$) with relative charged particle multiplicity density ($frac{dN_{ch}/dy}{<dN_{ch}/dy>}$). In our present work we have performed a comprehensive study of the production of charmonia as a function of charged particle multiplicity in $p+p$ collisions at LHC energies using pQCD-inspired multiparton interaction model, PYTHIA8 tune 4C, with and without Color Reconnection (CR) scheme. A detail multiplicity and energy dependent study is performed to understand the effects of MPI on $J/psi$ production. The ratio of $psi(2S)$ to $J/psi$ is also studied as a function of charged particle multiplicity at LHC energies.
High-multiplicity pp collisions at the Large Hadron Collider (LHC) energies have created special importance in view of the Underlying Event (UE) observables. The recent results of LHC, such as long range angular correlation, flow-like patterns, stran geness enhancement etc. in high multiplicity events are not yet completely understood. In the same direction, the understanding of multiplicity dependence of J/$psi$ production is highly necessary. Transverse spherocity, which is an event shape variable, helps to investigate the particle production by isolating the hard and the soft components. In the present study, we have investigated the multiplicity dependence of J/$psi$ production at mid-rapidity and forward rapidity through the transverse spherocity analysis and tried to understand the role of jets by separating the isotropic and jetty events from the minimum bias collisions. We have analyzed the J/$psi$ production at the mid-rapidity and forward rapidities via dielectron and dimuon channels, respectively using 4C tuned PYTHIA8 event generator. The analysis has been performed in two different center-of-mass energies: $sqrt{s}$ = 5.02 and 13 TeV, to see the energy dependence of jet contribution to the multiplicity dependence study of J/$psi$ production. Furthermore, we have studied the production dynamics through the dependence of thermodynamic parameters on event multiplicity and transverse spherocity.
Motivated by a recent successful dynamical explanation for the newly observed fully-charm structure $X(6900)$ in the mass spectrum of di-$J/psi$ by LHCb [J.~Z.~Wang textit{et al.} arXiv:2008.07430], in this work, we extend the same dynamical rescatte ring mechanism to predict the line shape of more potential fully-heavy structures in the invariant mass spectrum of $J/psi psi(3686)$, $J/psi psi(3770)$, $psi(3686) psi(3686)$, and $J/psi Upsilon(1S)$ at high energy proton-proton collisions, whose verification in experiments should be helpful to further clarify the nature of $X(6900)$. The above final states of vector heavy quarkonia can be experimentally reconstructed more effectively by a $mu^+mu^-$ pair in the muon detector compared with $Qbar{Q}$ meson with other quantum numbers. Furthermore, the corresponding peak mass positions of each of predicted fully-heavy structures are also given. Our theoretical studies here could provide some valuable information for the future measurement proposals of LHCb and CMS, especially based on the accumulated data after completing Run III of LHC in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا