ترغب بنشر مسار تعليمي؟ اضغط هنا

BiCh2-based superconductors (Ch: S, Se) are a new series of layered superconductor. However, mechanisms for the emergence of superconductivity in BiCh2-based superconductors have not been clarified. In this study, we have investigated crystal structu re of two series of optimally-doped BiCh2-based superconductors, Ce1-xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1-ySey)2, using powder synchrotron x-ray diffraction in order to reveal the relationship between crystal structure and superconducting properties of the BiCh2-based family. We have found that an enhancement of in-plane chemical pressure would commonly induce bulk superconductivity in both systems. Furthermore, we have revealed that superconducting transition temperature for REO0.5F0.5BiCh2 superconductors could universally be determined by degree of in-plane chemical pressure.
High-quality polycrystalline samples of LaO0.5F0.5BiS2 were obtained using high-pressure synthesis technique. The LaO0.5F0.5BiS2 sample prepared by heating at 700 C under 2 GPa showed superconductivity with superconducting transition temperatures (Tc ) of Tconset = 11.1 and Tczero = 8.5 K in the electrical resistivity measurements and Tconset = 11.5 and Tcirr = 9.4 K in the magnetic susceptibility measurements, which are obviously higher than those of the LaO0.5F0.5BiS2 polycrystalline samples obtained using conventional solid-state reaction. It was found that the high-Tc phase can be stabilized under high pressure and relatively-low annealing temperature. X-ray diffraction analysis revealed that the high-Tc phase possessed a small ratio of lattice constants of a and c, c/a.
We show the observation of the coexistence of bulk superconductivity and ferromagnetism in CeO1-xFxBiS2(x = 0 - 1.0) prepared by annealing under high-pressure. In CeO1-xFxBiS2 system, both superconductivity and two types of ferromagnetism with respec tive magnetic transition temperatures of 4.5 K and 7.5 K are induced upon systematic F substitution. This fact suggests that carriers generated by the substitution of O by F are supplied to not only the BiS2 superconducting layers but also the CeO blocking layers. Furthermore, the highest superconducting transition temperature is observed when the ferromagnetism is also enhanced, which implies that superconductivity and ferromagnetism are linked to each other in the CeO1-xFxBiS2 system.
We have successfully synthesized a new BiS2-based superconductor NdOBiS2 with F-doping. This compound is composed of superconducting BiS2 layers and blocking NdO layers, which indicates that the BiS2 layer is the one of the common superconducting lay ers like the CuO2 layer of cuprates or Fe-As layer of Fe-based superconductors. We can obtain NdO1-xFxBiS2 with bulk superconductivity by a solid-state reaction under ambient pressure. Therefore, NdO1-xFxBiS2 should be the suitable material to elucidate the mechanism of superconductivity in the BiS2-layer.
Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high-Tc (high transition temperature) cuprates and the Fe-based superconductors pos sess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS2-based layered compound Bi4O4S3. It was found that superconductivity of Bi4O4S3 originates from the BiS2 layers. The crystal structure is composed of a stacking of BiS2 superconducting layers and the spacer layers, which resembles those of high-Tc cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS2-based layered superconductor LaO1-xFxBiS2, with a Tc as high as 10.6 K.
Enhancements of superconducting properties were observed in FeSe wires using a quenching technique. Zero resistivity was achieved at about 10 K in quenched wires, which is about 2 K higher than that of polycrystalline FeSe bulk. Furthermore, transpor t Jc of quenched wires showed three times higher than that of furnace-cooled wires. In contrast, the quenched polycrystalline FeSe bulks did not show the enhancement of Tc. The quenching technique is a greatly promising for fabricating FeSe wires with high Tc and high Jc, and quenched FeSe wires have high potential for superconducting wire applications.
A huge enhancement of the superconducting transition temperature Tc was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K /GPa. The upper critical field Hc2 was estimated to be ~ 72 T at 1.48 GPa. Because of the high Hc2, FeSe system may be a candidate for application as superconducting wire rods. Moreover, the investigation of superconductivity on simple structured FeSe may provide important clues to the mechanism of superconductivity in iron-based superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا