ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of bulk superconductivity and ferromagnetism in CeO1-xFxBiS2

210   0   0.0 ( 0 )
 نشر من قبل Satoshi Demura
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show the observation of the coexistence of bulk superconductivity and ferromagnetism in CeO1-xFxBiS2(x = 0 - 1.0) prepared by annealing under high-pressure. In CeO1-xFxBiS2 system, both superconductivity and two types of ferromagnetism with respective magnetic transition temperatures of 4.5 K and 7.5 K are induced upon systematic F substitution. This fact suggests that carriers generated by the substitution of O by F are supplied to not only the BiS2 superconducting layers but also the CeO blocking layers. Furthermore, the highest superconducting transition temperature is observed when the ferromagnetism is also enhanced, which implies that superconductivity and ferromagnetism are linked to each other in the CeO1-xFxBiS2 system.



قيم البحث

اقرأ أيضاً

105 - S. Nandi , W. T. Jin , Y. Xiao 2014
The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.15 has been determined using element specific x-ray resonant magnetic scattering. Combining magnetic, thermodynamic and scattering measurements, we co nclude that the long range ferromagnetic order of the Eu2+ moments aligned primarily along the c axis coexists with the bulk superconductivity at zero field. At an applied magnetic field >= 0.6 T, superconductivity still coexists with the ferromagnetic Eu2+ moments which are polarized along the field direction. We propose a spontaneous vortex state for the coexistence of superconductivity and ferromagnetism in EuFe2(As0.85P0.15)2.
Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe ($T_{rm Curie} sim 2.5$ K and $T_{rm SC}$ $sim$ 0.6 K) is reported from $^{59}$Co nuclear quadrupole resonance (NQR). The $^{59}$Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate $1/T_1$ in the ferromagnetic (FM) phase decreases below $T_{rm SC}$ due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the $^{59}$Co-NQR spectrum around $T_{rm Curie}$ show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.
372 - S. Moehlecke , Pei-Chun Ho , 2002
Superconducting characteristics such as the Meissner-Ochsenfeld state, screening supercurrents and hysteresis loops of type-II superconductors were observed from the temperature and magnetic field dependences of the magnetic moment, m(T, H), in graph ite powders reacted with sulfur for temperatures below 9.0 K. The temperature dependence of the lower critical field Hc1(T) was determined and the zero-temperature penetration depth, lambda(0), was estimated (lambda (0) = 227 nm). The superconductivity was observed to be highly anisotropic and to coexist with a ferromagnetic state that has a Curie temperature well above room temperature. A continuous transition from the superconducting state to the ferromagnetic state could be achieved by simply increasing the applied magnetic field.
Recent reports of the detecting of ferromagnetism and superconductivity in ruthenium-cuprates have aroused great interest. Unfortunately, whether the two antagonistic phenomena coexist in the same space in the compounds remains unresolved. By employi ng the magneto-optical-imaging technique, ferromagnetism and superconductivity were indeed directly observed to coexist in the same space in RuSr2(Gd0.7Ce0.3)2Cu2O10 within the experimental resolution of ~ 10 (mu)m. The observation sets a length scale limit for models proposed to account for the competition between ferromagnetism and superconductivity, especially d-wave superconductivity, in this interesting class of compounds.
132 - J. Lee , S. Demura , M. B. Stone 2014
Bulk magnetization, transport and neutron scattering measurements were performed to investigate the electronic and magnetic properties of a polycrystalline sample of the newly discovered ferromagnetic superconductor, CeO$_{0.3}$F$_{0.7}$BiS$_{2}$. Fe rromagnetism develops below T$_{FM}$ = 6.54(8) K and superconductivity is found to coexist with the ferromagnetic state below T$_{SC}$ ~ 4.5 K. Inelastic neutron scattering measurements reveal a very weakly dispersive magnetic excitation at 1.8 meV that can be explained by an Ising-like spin Hamiltonian. Under application of an external magnetic field, the direction of the magnetic moment changes from the c-axis to the ab-plane and the 1.8 meV excitation splits into two modes. A possible mechanism for the unusual magnetism and its relation to superconductivity is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا