ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Yipeng Liu , Qi Yang , Yiling Xu 2021
Point cloud compression (PCC) has made remarkable achievement in recent years. In the mean time, point cloud quality assessment (PCQA) also realize gratifying development. Some recently emerged metrics present robust performance on public point cloud assessment databases. However, these metrics have not been evaluated specifically for PCC to verify whether they exhibit consistent performance with the subjective perception. In this paper, we establish a new dataset for compression evaluation first, which contains 175 compressed point clouds in total, deriving from 7 compression algorithms with 5 compression levels. Then leveraging the proposed dataset, we evaluate the performance of the existing PCQA metrics in terms of different compression types. The results demonstrate some deficiencies of existing metrics in compression evaluation.
This paper investigates bilateral control of teleoperators with closed architecture and subjected to arbitrary bounded time-varying delay. A prominent challenge for bilateral control of such teleoperators lies in the closed architecture, especially i n the context not involving interaction force/torque measurement. This yields the long-standing situation that most bilateral control rigorously developed in the literature is hard to be justified as applied to teleoperators with closed architecture. With a new class of dynamic feedback, we propose kinematic and adaptive dynamic controllers for teleoperators with closed architecture, and we show that the proposed kinematic and dynamic controllers are robust with respect to arbitrary bounded time-varying delay. In addition, by exploiting the input-output properties of an inverted form of the dynamics of robot manipulators with closed architecture, we remove the assumption of uniform exponential stability of a linear time-varying system due to the adaptation to the gains of the inner controller in demonstrating stability of the presented adaptive dynamic control. The application of the proposed approach is illustrated by the experimental results using a Phantom Omni and a UR10 robot.
Deep learning has been used to image compressive sensing (CS) for enhanced reconstruction performance. However, most existing deep learning methods train different models for different subsampling ratios, which brings additional hardware burden. In t his paper, we develop a general framework named scalable deep compressive sensing (SDCS) for the scalable sampling and reconstruction (SSR) of all existing end-to-end-trained models. In the proposed way, images are measured and initialized linearly. Two sampling masks are introduced to flexibly control the subsampling ratios used in sampling and reconstruction, respectively. To make the reconstruction model adapt to any subsampling ratio, a training strategy dubbed scalable training is developed. In scalable training, the model is trained with the sampling matrix and the initialization matrix at various subsampling ratios by integrating different sampling matrix masks. Experimental results show that models with SDCS can achieve SSR without changing their structure while maintaining good performance, and SDCS outperforms other SSR methods.
138 - Yipeng Liu , Qi Yang , Yiling Xu 2020
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point cloud is difficult, so the no-reference (NR) methods have become a research hotspot. Few researches about NR objective quality metrics are conducted due to the lack of a large-scale subjective point cloud dataset. Besides, the distinctive property of the point cloud format makes it infeasible to apply blind image quality assessment (IQA) methods directly to predict the quality scores of point clouds. In this paper, we establish a large-scale PCQA dataset, which includes 104 reference point clouds and more than 24,000 distorted point clouds. In the established dataset, each reference point cloud is augmented with 33 types of impairments (e.g., Gaussian noise, contrast distortion, geometry noise, local loss, and compression loss) at 7 different distortion levels. Besides, inspired by the hierarchical perception system and considering the intrinsic attributes of point clouds, an end-to-end sparse convolutional neural network (CNN) is designed to accurately estimate the subjective quality. We conduct several experiments to evaluate the performance of the proposed network. The results demonstrate that the proposed network has reliable performance. The dataset presented in this work will be publicly accessible at http://smt.sjtu.edu.cn.
Perfect state transfer in graphs is a concept arising from quantum physics and quantum computing. Given a graph $G$ with adjacency matrix $A_G$, the transition matrix of $G$ with respect to $A_G$ is defined as $H_{A_{G}}(t) = exp(-mathrm{i}tA_{G})$, $t in mathbb{R}, mathrm{i}=sqrt{-1}$. We say that perfect state transfer from vertex $u$ to vertex $v$ occurs in $G$ at time $tau$ if $u e v$ and the modulus of the $(u,v)$-entry of $H_{A_G}(tau)$ is equal to $1$. If the moduli of all diagonal entries of $H_{A_G}(tau)$ are equal to $1$ for some $tau$, then $G$ is called periodic with period $tau$. In this paper we give a few sufficient conditions for NEPS of complete graphs to be periodic or exhibit perfect state transfer.
95 - Fei Wen , Hewen Wei , Yipeng Liu 2020
Maximum consensus (MC) robust fitting is a fundamental problem in low-level vision to process raw-data. Typically, it firstly finds a consensus set of inliers and then fits a model on the consensus set. This work proposes a new formulation to achieve simultaneous maximum consensus and model estimation (MCME), which has two significant features compared with traditional MC robust fitting. First, it takes fitting residual into account in finding inliers, hence its lowest achievable residual in model fitting is lower than that of MC robust fitting. Second, it has an unconstrained formulation involving binary variables, which facilitates the use of the effective semidefinite relaxation (SDR) method to handle the underlying challenging combinatorial optimization problem. Though still nonconvex after SDR, it becomes biconvex in some applications, for which we use an alternating minimization algorithm to solve. Further, the sparsity of the problem is exploited in combination with low-rank factorization to develop an efficient algorithm. Experiments show that MCME significantly outperforms RANSAC and deterministic approximate MC methods at high outlier ratios. Besides, in rotation and Euclidean registration, it also compares favorably with state-of-the-art registration methods, especially in high noise and outliers. Code is available at textit{https://github.com/FWen/mcme.git}.
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information. During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes. The image quality degeneration would badly effect some applications. In this paper, we present a HSI restoration method named smooth and robust low rank tensor recovery. Specifically, we propose a structural tensor decomposition in accordance with the linear spectral mixture model of HSI. It decomposes a tensor into sums of outer matrix vector products, where the vectors are orthogonal due to the independence of endmember spectrums. Based on it, the global low rank tensor structure can be well exposited for HSI denoising. In addition, the 3D anisotropic total variation is used for spatial spectral piecewise smoothness of HSI. Meanwhile, the sparse noise including impulse noise, deadlines and stripes, is detected by the l1 norm regularization. The Frobenius norm is used for the heavy Gaussian noise in some real world scenarios. The alternating direction method of multipliers is adopted to solve the proposed optimization model, which simultaneously exploits the global low rank property and the spatial spectral smoothness of the HSI. Numerical experiments on both simulated and real data illustrate the superiority of the proposed method in comparison with the existing ones.
Most compressive sensing (CS) reconstruction methods can be divided into two categories, i.e. model-based methods and classical deep network methods. By unfolding the iterative optimization algorithm for model-based methods onto networks, deep unfold ing methods have the good interpretation of model-based methods and the high speed of classical deep network methods. In this paper, to solve the visual image CS problem, we propose a deep unfolding model dubbed AMP-Net. Rather than learning regularization terms, it is established by unfolding the iterative denoising process of the well-known approximate message passing algorithm. Furthermore, AMP-Net integrates deblocking modules in order to eliminate the blocking artifacts that usually appear in CS of visual images. In addition, the sampling matrix is jointly trained with other network parameters to enhance the reconstruction performance. Experimental results show that the proposed AMP-Net has better reconstruction accuracy than other state-of-the-art methods with high reconstruction speed and a small number of network parameters.
92 - Huyan Huang , Yipeng Liu , Ce Zhu 2020
Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors. The tensor ring (TR) decomposition is invariant under the permutation of tensors with different mode properties , which ensures the uniformity of decomposed factors and mode attributes. The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications. To let coupled tensors help each other for missing component estimation, in this paper we utilize TR for coupled completion by sharing parts of the latent factors. The optimization model for coupled TR completion is developed with a novel Frobenius norm. It is solved by the block coordinate descent algorithm which efficiently solves a series of quadratic problems resulted from sampling pattern. The excess risk bound for this optimization model shows the theoretical performance enhancement in comparison with other coupled nuclear norm based methods. The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.
Blind image deblurring is a long standing challenging problem in image processing and low-level vision. Recently, sophisticated priors such as dark channel prior, extreme channel prior, and local maximum gradient prior, have shown promising effective ness. However, these methods are computationally expensive. Meanwhile, since these priors involved subproblems cannot be solved explicitly, approximate solution is commonly used, which limits the best exploitation of their capability. To address these problems, this work firstly proposes a simplified sparsity prior of local minimal pixels, namely patch-wise minimal pixels (PMP). The PMP of clear images is much more sparse than that of blurred ones, and hence is very effective in discriminating between clear and blurred images. Then, a novel algorithm is designed to efficiently exploit the sparsity of PMP in deblurring. The new algorithm flexibly imposes sparsity inducing on the PMP under the MAP framework rather than directly uses the half quadratic splitting algorithm. By this, it avoids non-rigorous approximation solution in existing algorithms, while being much more computationally efficient. Extensive experiments demonstrate that the proposed algorithm can achieve better practical stability compared with state-of-the-arts. In terms of deblurring quality, robustness and computational efficiency, the new algorithm is superior to state-of-the-arts. Code for reproducing the results of the new method is available at https://github.com/FWen/deblur-pmp.git.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا