ﻻ يوجد ملخص باللغة العربية
This paper investigates bilateral control of teleoperators with closed architecture and subjected to arbitrary bounded time-varying delay. A prominent challenge for bilateral control of such teleoperators lies in the closed architecture, especially in the context not involving interaction force/torque measurement. This yields the long-standing situation that most bilateral control rigorously developed in the literature is hard to be justified as applied to teleoperators with closed architecture. With a new class of dynamic feedback, we propose kinematic and adaptive dynamic controllers for teleoperators with closed architecture, and we show that the proposed kinematic and dynamic controllers are robust with respect to arbitrary bounded time-varying delay. In addition, by exploiting the input-output properties of an inverted form of the dynamics of robot manipulators with closed architecture, we remove the assumption of uniform exponential stability of a linear time-varying system due to the adaptation to the gains of the inner controller in demonstrating stability of the presented adaptive dynamic control. The application of the proposed approach is illustrated by the experimental results using a Phantom Omni and a UR10 robot.
In this paper, we equip the conventional discrete-time queueing network with a Markovian input process, that, in addition to the usual short-term stochastics, governs the mid- to long-term behavior of the links between the network nodes. This is remi
We present a method for incremental modeling and time-varying control of unknown nonlinear systems. The method combines elements of evolving intelligence, granular machine learning, and multi-variable control. We propose a State-Space Fuzzy-set-Based
This paper presents a method for controlling the voltage of inverter-based Microgrids by proposing a new scale-free distributed cooperative controller. The communication network is modeled by a general time-varying graph which enhances the resilience
This paper introduces a closed-loop frequency analysis tool for reset control systems. To begin with sufficient conditions for the existence of the steady-state response for a closed-loop system with a reset element and driven by periodic references
This paper studies coordination problem for time-varying networks suffering from antagonistic information, quantified by scaling parameters. By such a manner, interacting property of the participating individuals and antagonistic information can be q