ترغب بنشر مسار تعليمي؟ اضغط هنا

Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting. Though several methods have demonstrated impressive transferability of untargeted adversarial examples, targeted adversarial transferability is sti ll challenging. The existing methods either have low targeted transferability or sacrifice computational efficiency. In this paper, we develop a simple yet practical framework to efficiently craft targeted transfer-based adversarial examples. Specifically, we propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes by simply altering the class embedding and share a single backbone. Extensive experiments demonstrate that our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods -- it reaches an average success rate of 29.6% against six diverse models based only on one substitute white-box model in the standard testing of NeurIPS 2017 competition, which outperforms the state-of-the-art gradient-based attack methods (with an average success rate of $<$2%) by a large margin. Moreover, the proposed method is also more efficient beyond an order of magnitude than gradient-based methods.
Collecting training data from untrusted sources exposes machine learning services to poisoning adversaries, who maliciously manipulate training data to degrade the model accuracy. When trained on offline datasets, poisoning adversaries have to inject the poisoned data in advance before training, and the order of feeding these poisoned batches into the model is stochastic. In contrast, practical systems are more usually trained/fine-tuned on sequentially captured real-time data, in which case poisoning adversaries could dynamically poison each data batch according to the current model state. In this paper, we focus on the real-time settings and propose a new attacking strategy, which affiliates an accumulative phase with poisoning attacks to secretly (i.e., without affecting accuracy) magnify the destructive effect of a (poisoned) trigger batch. By mimicking online learning and federated learning on CIFAR-10, we show that the model accuracy will significantly drop by a single update step on the trigger batch after the accumulative phase. Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects, with no need to explore complex techniques.
143 - Yinpeng Dong , Ke Xu , Xiao Yang 2021
It is well known that deep learning models have a propensity for fitting the entire training set even with random labels, which requires memorization of every training sample. In this paper, we investigate the memorization effect in adversarial train ing (AT) for promoting a deeper understanding of capacity, convergence, generalization, and especially robust overfitting of adversarially trained classifiers. We first demonstrate that deep networks have sufficient capacity to memorize adversarial examples of training data with completely random labels, but not all AT algorithms can converge under the extreme circumstance. Our study of AT with random labels motivates further analyses on the convergence and generalization of AT. We find that some AT methods suffer from a gradient instability issue, and the recently suggested complexity measures cannot explain robust generalization by considering models trained on random labels. Furthermore, we identify a significant drawback of memorization in AT that it could result in robust overfitting. We then propose a new mitigation algorithm motivated by detailed memorization analyses. Extensive experiments on various datasets validate the effectiveness of the proposed method.
186 - Qi-An Fu , Yinpeng Dong , Hang Su 2021
Deep learning models are vulnerable to adversarial examples, which can fool a target classifier by imposing imperceptible perturbations onto natural examples. In this work, we consider the practical and challenging decision-based black-box adversaria l setting, where the attacker can only acquire the final classification labels by querying the target model without access to the models details. Under this setting, existing works often rely on heuristics and exhibit unsatisfactory performance. To better understand the rationality of these heuristics and the limitations of existing methods, we propose to automatically discover decision-based adversarial attack algorithms. In our approach, we construct a search space using basic mathematical operations as building blocks and develop a random search algorithm to efficiently explore this space by incorporating several pruning techniques and intuitive priors inspired by program synthesis works. Although we use a small and fast model to efficiently evaluate attack algorithms during the search, extensive experiments demonstrate that the discovered algorithms are simple yet query-efficient when transferred to larger normal and defensive models on the CIFAR-10 and ImageNet datasets. They achieve comparable or better performance than the state-of-the-art decision-based attack methods consistently.
Although deep neural networks (DNNs) have made rapid progress in recent years, they are vulnerable in adversarial environments. A malicious backdoor could be embedded in a model by poisoning the training dataset, whose intention is to make the infect ed model give wrong predictions during inference when the specific trigger appears. To mitigate the potential threats of backdoor attacks, various backdoor detection and defense methods have been proposed. However, the existing techniques usually require the poisoned training data or access to the white-box model, which is commonly unavailable in practice. In this paper, we propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model. We introduce a gradient-free optimization algorithm to reverse-engineer the potential trigger for each class, which helps to reveal the existence of backdoor attacks. In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models. Extensive experiments on hundreds of DNN models trained on several datasets corroborate the effectiveness of our method under the black-box setting against various backdoor attacks.
Adversarial training (AT) is one of the most effective strategies for promoting model robustness. However, recent benchmarks show that most of the proposed improvements on AT are less effective than simply early stopping the training procedure. This counter-intuitive fact motivates us to investigate the implementation details of tens of AT methods. Surprisingly, we find that the basic settings (e.g., weight decay, training schedule, etc.) used in these methods are highly inconsistent. In this work, we provide comprehensive evaluations on CIFAR-10, focusing on the effects of mostly overlooked training tricks and hyperparameters for adversarially trained models. Our empirical observations suggest that adversarial robustness is much more sensitive to some basic training settings than we thought. For example, a slightly different value of weight decay can reduce the model robust accuracy by more than 7%, which is probable to override the potential promotion induced by the proposed methods. We conclude a baseline training setting and re-implement previous defenses to achieve new state-of-the-art results. These facts also appeal to more concerns on the overlooked confounders when benchmarking defenses.
As billions of personal data being shared through social media and network, the data privacy and security have drawn an increasing attention. Several attempts have been made to alleviate the leakage of identity information from face photos, with the aid of, e.g., image obfuscation techniques. However, most of the present results are either perceptually unsatisfactory or ineffective against face recognition systems. Our goal in this paper is to develop a technique that can encrypt the personal photos such that they can protect users from unauthorized face recognition systems but remain visually identical to the original version for human beings. To achieve this, we propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks which can be overlaid on facial images, such that the original identities can be concealed without sacrificing the visual quality. Extensive experiments demonstrate that TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models under practical test scenarios. Besides, we also show the practical and effective applicability of our method on a commercial API service.
Adversarial training (AT) is one of the most effective defenses against adversarial attacks for deep learning models. In this work, we advocate incorporating the hypersphere embedding (HE) mechanism into the AT procedure by regularizing the features onto compact manifolds, which constitutes a lightweight yet effective module to blend in the strength of representation learning. Our extensive analyses reveal that AT and HE are well coupled to benefit the robustness of the adversarially trained models from several aspects. We validate the effectiveness and adaptability of HE by embedding it into the popular AT frameworks including PGD-AT, ALP, and TRADES, as well as the FreeAT and FastAT strategies. In the experiments, we evaluate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets, which verifies that integrating HE can consistently enhance the model robustness for each AT framework with little extra computation.
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples. However, most existing AT methods adopt a specific attack to craft adversarial examples, leading to th e unreliable robustness against other unseen attacks. Besides, a single attack algorithm could be insufficient to explore the space of perturbations. In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models. ADT is formulated as a minimax optimization problem, where the inner maximization aims to learn an adversarial distribution to characterize the potential adversarial examples around a natural one under an entropic regularizer, and the outer minimization aims to train robust models by minimizing the expected loss over the worst-case adversarial distributions. Through a theoretical analysis, we develop a general algorithm for solving ADT, and present three approaches for parameterizing the adversarial distributions, ranging from the typical Gaussian distributions to the flexible implicit ones. Empirical results on several benchmarks validate the effectiveness of ADT compared with the state-of-the-art AT methods.
Deep neural networks are vulnerable to adversarial examples, which becomes one of the most important research problems in the development of deep learning. While a lot of efforts have been made in recent years, it is of great significance to perform correct and complete evaluations of the adversarial attack and defense algorithms. In this paper, we establish a comprehensive, rigorous, and coherent benchmark to evaluate adversarial robustness on image classification tasks. After briefly reviewing plenty of representative attack and defense methods, we perform large-scale experiments with two robustness curves as the fair-minded evaluation criteria to fully understand the performance of these methods. Based on the evaluation results, we draw several important findings and provide insights for future research.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا