ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we study the representations of the Hopf-Ore extensions $kG(chi^{-1}, a, 0)$ of group algebra $kG$, where $k$ is an algebraically closed field. We classify all finite dimensional simple $kG(chi^{-1}, a, 0)$-modules under the assumption $|chi|=infty$ and $|chi|=|chi(a)|<infty$ respectively, and all finite dimensional indecomposable $kG(chi^{-1}, a, 0)$-modules under the assumption that $kG$ is finite dimensional and semisimple, and $|chi|=|chi(a)|$. Moreover, we investigate the decomposition rules for the tensor product modules over $kG(chi^{-1}, a, 0)$ when char$(k)$=0. Finally, we consider the representations of some Hopf-Ore extension of the dihedral group algebra $kD_n$, where $n=2m$, $m>1$ odd, and char$(k)$=0. The Grothendieck ring and the Green ring of the Hopf-Ore extension are described respectively in terms of generators and relations.
In this paper, we study tensor (or monoidal) categories of finite rank over an algebraically closed field $mathbb F$. Given a tensor category $mathcal{C}$, we have two structure invariants of $mathcal{C}$: the Green ring (or the representation ring) $r(mathcal{C})$ and the Auslander algebra $A(mathcal{C})$ of $mathcal{C}$. We show that a Krull-Schmit abelian tensor category $mathcal{C}$ of finite rank is uniquely determined (up to tensor equivalences) by its two structure invariants and the associated associator system of $mathcal{C}$. In fact, we can reconstruct the tensor category $mathcal{C}$ from its two invarinats and the associator system. More general, given a quadruple $(R, A, phi, a)$ satisfying certain conditions, where $R$ is a $mathbb{Z}_+$-ring of rank $n$, $A$ is a finite dimensional $mathbb F$-algebra with a complete set of $n$ primitive orthogonal idempotents, $phi$ is an algebra map from $Aotimes_{mathbb F}A$ to an algebra $M(R, A, n)$ constructed from $A$ and $R$, and $a={a_{i,j,l}|1< i,j,l<n}$ is a family of invertible matrices over $A$, we can construct a Krull-Schmidt and abelian tensor category $mathcal C$ over $mathbb{F}$ such that $R$ is the Green ring of $mathcal C$ and $A$ is the Auslander algebra of $mathcal C$. In this case, $mathcal C$ has finitely many indecomposable objects (up to isomorphisms) and finite dimensional Hom-spaces. Moreover, we will give a necessary and sufficient condition for such two tensor categories to be tensor equivalent.
63 - Jiwei He , Yinhuo Zhang 2017
An arbitrary group action on an algebra $R$ results in an ideal $mathfrak{r}$ of $R$. This ideal $mathfrak{r}$ fits into the classical radical theory, and will be called the radical of the group action. If $R$ is a noetherian algebra with finite GK-d imension and $G$ is a finite group, then the difference between the GK-dimensionsof $R$ and that of $R/mathfrak{r}$ is called the pertinency of the group action. We provide some methods to find elements of the radical, which helps to calculate the pertinency of some special group actions. The $mathfrak{r}$-adic local cohomology of $R$ is related to the singularities of the invariant subalgebra $R^G$. We establish an equivalence between the quotient category of the invariant $R^G$ and that of the skew group ring $R*G$ through the torsion theory associated to the radical $mathfrak{r}$. With the help of the equivalence, we show that the invariant subalgebra $R^G$ will inherit certain Cohen-Macaulay property from $R$.
101 - Jiwei He , Yinhuo Zhang 2017
Let $H$ be a semisimple Hopf algebra, and let $R$ be a noetherian left $H$-module algebra. If $R/R^H$ is a right $H^*$-dense Galois extension, then the invariant subalgebra $R^H$ will inherit the AS-Cohen-Macaulay property from $R$ under some mild co nditions, and $R$, when viewed as a right $R^H$-module, is a Cohen-Macaulay module. In particular, we show that if $R$ is a noetherian complete semilocal algebra which is AS-regular of global dimension 2 and $H=operatorname{bf k} G$ for some finite subgroup $Gsubseteq Aut(R)$, then all the indecomposable Cohen-Macaulay module of $R^H$ is a direct summand of $R_{R^H}$, and hence $R^H$ is Cohen-Macaulay-finite, which generalizes a classical result for commutative rings. The main tool used in the paper is the extension groups of objects in the corresponding quotient categories.
In this paper, we initiate the study of nondiagonal finite quasi-quantum groups over finite abelian groups. We mainly study the Nichols algebras in the twisted Yetter-Drinfeld module category $_{k G}^{k G}mathcal{YD}^Phi$ with $Phi$ a nonabelian $3$- cocycle on a finite abelian group $G.$ A complete clarification is obtained for the Nichols algebra $B(V)$ in case $V$ is a simple twisted Yetter-Drinfeld module of nondiagonal type. This is also applied to provide a complete classification of finite-dimensional coradically graded pointed coquasi-Hopf algebras over abelian groups of odd order and confirm partially the generation conjecture of pointed finite tensor categories due to Etingof, Gelaki, Nikshych and Ostrik.
Let $H$ and $L$ be two Hopf algebras such that their comodule categories are monoidal equivalent. We prove that if $H$ is a twisted Calabi-Yau (CY) Hopf algebra, then $L$ is a twisted CY algebra when it is homologically smooth. Especially, if $H$ is a Noetherian twisted CY Hopf algebra and $L$ has finite global dimension, then $L$ is a twisted CY algebra.
Let $frak{g}$ be a finite dimensional simple complex Lie algebra and $U=U_q(frak{g})$ the quantized enveloping algebra (in the sense of Jantzen) with $q$ being generic. In this paper, we show that the center $Z(U_q(frak{g}))$ of the quantum group $U_ q(frak{g})$ is isomorphic to a monoid algebra, and that $Z(U_q(frak{g}))$ is a polynomial algebra if and only if $frak{g}$ is of type $A_1, B_n, C_n, D_{2k+2}, E_7, E_8, F_4$ or $G_2.$ Moreover, in case $frak{g}$ is of type $D_{n}$ with $n$ odd, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in $n+1$ variables with one relation; in case $frak{g}$ is of type $E_6$, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in fourteen variables with eight relations; in case $frak{g}$ is of type $A_{n}$, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra described by $n$-sequences.
In this paper we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups. Our methods depend on the theory of braided strict monoidal categories which are pivotal, more explicitly the diagram category of framed tangles.
166 - Jeroen Dello , Yinhuo Zhang 2014
Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_Hmathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $^H_Hmathcal{YD}$ trivializable on $_Hmathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $mathrm{BM}(k, H,R)$ in [18]. To this aim, we have to develop the braided bi-Galois theory initiated by Schauenburg in [14,15], which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category.
We compute the Nakayama automorphism of a PBW-deformation of a Koszul Artin-Schelter Gorenstein algebra of finite global dimension, and give a criterion for an augmented PBW-deformation of a Koszul Calabi-Yau algebra to be Calabi-Yau. The relations b etween the Calabi-Yau property of augmented PBW-deformations and that of non-augmented cases are discussed. The Nakayama automorphisms of PBW-deformations of Koszul Artin-Schelter Gorenstein algebras of global dimensions 2 and 3 are given explicitly. We show that if a PBW-deformation of a graded Calabi-Yau algebra is still Calabi-Yau, then it is defined by a potential under some mild conditions. Some classical results are also recovered. Our main method used in this paper is elementary and based on linear algebra. The results obtained in this paper will be applied in a subsequent paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا