ترغب بنشر مسار تعليمي؟ اضغط هنا

On the center of the quantized enveloping algebra of a simple Lie algebra

102   0   0.0 ( 0 )
 نشر من قبل Yinhuo Zhang
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $frak{g}$ be a finite dimensional simple complex Lie algebra and $U=U_q(frak{g})$ the quantized enveloping algebra (in the sense of Jantzen) with $q$ being generic. In this paper, we show that the center $Z(U_q(frak{g}))$ of the quantum group $U_q(frak{g})$ is isomorphic to a monoid algebra, and that $Z(U_q(frak{g}))$ is a polynomial algebra if and only if $frak{g}$ is of type $A_1, B_n, C_n, D_{2k+2}, E_7, E_8, F_4$ or $G_2.$ Moreover, in case $frak{g}$ is of type $D_{n}$ with $n$ odd, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in $n+1$ variables with one relation; in case $frak{g}$ is of type $E_6$, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in fourteen variables with eight relations; in case $frak{g}$ is of type $A_{n}$, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra described by $n$-sequences.



قيم البحث

اقرأ أيضاً

121 - Yun Gao , Naihuan Jing 2008
We propose a quantum analogue of a Tits-Kantor-Koecher algebra with a Jordan torus as an coordinated algebra by looking at the vertex operator construction over a Fock space.
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
157 - A. M. Semikhatov 2013
We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a W_3-counterpart of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.
We introduce a new quantized enveloping superalgebra $mathfrak{U}_q{mathfrak{p}}_n$ attached to the Lie superalgebra ${mathfrak{p}}_n$ of type $P$. The superalgebra $mathfrak{U}_q{mathfrak{p}}_n$ is a quantization of a Lie bisuperalgebra structure on ${mathfrak{p}}_n$ and we study some of its basic properties. We also introduce the periplectic $q$-Brauer algebra and prove that it is the centralizer of the $mathfrak{U}_q {mathfrak{p}}_n$-module structure on ${mathbb C}(n|n)^{otimes l}$. We end by proposing a definition for a new periplectic $q$-Schur superalgebra.
87 - Lu Ding , Wei Jiang , Wei Zhang 2015
For a C1-cofinite vertex algebra V, we give an efficient way to calculate Zhus algebra A(V) of V with respect to its C1-generators and relations. We use two examples to explain how this method works.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا