ترغب بنشر مسار تعليمي؟ اضغط هنا

Cohen-Macaulay invariant subalgebras of Hopf dense Galois extensions

102   0   0.0 ( 0 )
 نشر من قبل Yinhuo Zhang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $H$ be a semisimple Hopf algebra, and let $R$ be a noetherian left $H$-module algebra. If $R/R^H$ is a right $H^*$-dense Galois extension, then the invariant subalgebra $R^H$ will inherit the AS-Cohen-Macaulay property from $R$ under some mild conditions, and $R$, when viewed as a right $R^H$-module, is a Cohen-Macaulay module. In particular, we show that if $R$ is a noetherian complete semilocal algebra which is AS-regular of global dimension 2 and $H=operatorname{bf k} G$ for some finite subgroup $Gsubseteq Aut(R)$, then all the indecomposable Cohen-Macaulay module of $R^H$ is a direct summand of $R_{R^H}$, and hence $R^H$ is Cohen-Macaulay-finite, which generalizes a classical result for commutative rings. The main tool used in the paper is the extension groups of objects in the corresponding quotient categories.



قيم البحث

اقرأ أيضاً

208 - Y.-H. Bao , J.-W. He , J. J. Zhang 2016
We study invariants and quotient categories of fixed subrings of Artin-Schelter regular algebras under Hopf algebra actions.
124 - Jacob White 2020
We study Cohen-Macaulay Hopf monoids in the category of species. The goal is to apply techniques from topological combinatorics to the study of polynomial invariants arising from combinatorial Hopf algebras. Given a polynomial invariant arising from a linearized Hopf monoid, we show that under certain conditions it is the Hilbert polynomial of a relative simplicial complex. If the Hopf monoid is Cohen-Macaulay, we give necessary and sufficient conditions for the corresponding relative simplicial complex to be relatively Cohen-Macaulay, which implies that the polynomial has a nonnegative $h$-vector. We apply our results to the weak and strong chromatic polynomials of acyclic mixed graphs, and the order polynomial of a double poset.
179 - Adriana Balan 2008
The notions of Galois and cleft extensions are generalized for coquasi-Hopf algebras. It is shown that such an extension over a coquasi-Hopf algebra is cleft if and only if it is Galois and has the normal basis property. A Schneider type theorem is p roven for coquasi-Hopf algebras with bijective antipode. As an application, we generalize Schauenburgs bialgebroid construction for coquasi-Hopf algebras.
In this paper we study the theory of cleft extensions for a weak bialgebra H. Among other results, we determine when two unitary crossed products of an algebra A by H are equivalent and we prove that if H is a weak Hopf algebra, then the categories o f H-cleft extensions of an algebra A, and of unitary crossed products of A by H, are equivalent.
In this paper, we study the representations of the Hopf-Ore extensions $kG(chi^{-1}, a, 0)$ of group algebra $kG$, where $k$ is an algebraically closed field. We classify all finite dimensional simple $kG(chi^{-1}, a, 0)$-modules under the assumption $|chi|=infty$ and $|chi|=|chi(a)|<infty$ respectively, and all finite dimensional indecomposable $kG(chi^{-1}, a, 0)$-modules under the assumption that $kG$ is finite dimensional and semisimple, and $|chi|=|chi(a)|$. Moreover, we investigate the decomposition rules for the tensor product modules over $kG(chi^{-1}, a, 0)$ when char$(k)$=0. Finally, we consider the representations of some Hopf-Ore extension of the dihedral group algebra $kD_n$, where $n=2m$, $m>1$ odd, and char$(k)$=0. The Grothendieck ring and the Green ring of the Hopf-Ore extension are described respectively in terms of generators and relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا