ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Yipeng Liu , Qi Yang , Yiling Xu 2021
Point cloud compression (PCC) has made remarkable achievement in recent years. In the mean time, point cloud quality assessment (PCQA) also realize gratifying development. Some recently emerged metrics present robust performance on public point cloud assessment databases. However, these metrics have not been evaluated specifically for PCC to verify whether they exhibit consistent performance with the subjective perception. In this paper, we establish a new dataset for compression evaluation first, which contains 175 compressed point clouds in total, deriving from 7 compression algorithms with 5 compression levels. Then leveraging the proposed dataset, we evaluate the performance of the existing PCQA metrics in terms of different compression types. The results demonstrate some deficiencies of existing metrics in compression evaluation.
Adaptive Bit Rate (ABR) decision plays a crucial role for ensuring satisfactory Quality of Experience (QoE) in video streaming applications, in which past network statistics are mainly leveraged for future network bandwidth prediction. However, most algorithms, either rules-based or learning-driven approaches, feed throughput traces or classified traces based on traditional statistics (i.e., mean/standard deviation) to drive ABR decision, leading to compromised performances in specific scenarios. Given the diverse network connections (e.g., WiFi, cellular and wired link) from time to time, this paper thus proposes to learn the ANT (a.k.a., Accurate Network Throughput) model to characterize the full spectrum of network throughput dynamics in the past for deriving the proper network condition associated with a specific cluster of network throughput segments (NTS). Each cluster of NTS is then used to generate a dedicated ABR model, by which we wish to better capture the network dynamics for diverse connections. We have integrated the ANT model with existing reinforcement learning (RL)-based ABR decision engine, where different ABR models are applied to respond to the accurate network sensing for better rate decision. Extensive experiment results show that our approach can significantly improve the user QoE by 65.5% and 31.3% respectively, compared with the state-of-the-art Pensive and Oboe, across a wide range of network scenarios.
120 - Qi Yang , Siheng Chen , Yiling Xu 2021
Distortion quantification of point clouds plays a stealth, yet vital role in a wide range of human and machine perception tasks. For human perception tasks, a distortion quantification can substitute subjective experiments to guide 3D visualization; while for machine perception tasks, a distortion quantification can work as a loss function to guide the training of deep neural networks for unsupervised learning tasks. To handle a variety of demands in many applications, a distortion quantification needs to be distortion discriminable, differentiable, and have a low computational complexity. Currently, however, there is a lack of a general distortion quantification that can satisfy all three conditions. To fill this gap, this work proposes multiscale potential energy discrepancy (MPED), a distortion quantification to measure point cloud geometry and color difference. By evaluating at various neighborhood sizes, the proposed MPED achieves global-local tradeoffs, capturing distortion in a multiscale fashion. Extensive experimental studies validate MPEDs superiority for both human and machine perception tasks.
138 - Yipeng Liu , Qi Yang , Yiling Xu 2020
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point cloud is difficult, so the no-reference (NR) methods have become a research hotspot. Few researches about NR objective quality metrics are conducted due to the lack of a large-scale subjective point cloud dataset. Besides, the distinctive property of the point cloud format makes it infeasible to apply blind image quality assessment (IQA) methods directly to predict the quality scores of point clouds. In this paper, we establish a large-scale PCQA dataset, which includes 104 reference point clouds and more than 24,000 distorted point clouds. In the established dataset, each reference point cloud is augmented with 33 types of impairments (e.g., Gaussian noise, contrast distortion, geometry noise, local loss, and compression loss) at 7 different distortion levels. Besides, inspired by the hierarchical perception system and considering the intrinsic attributes of point clouds, an end-to-end sparse convolutional neural network (CNN) is designed to accurately estimate the subjective quality. We conduct several experiments to evaluate the performance of the proposed network. The results demonstrate that the proposed network has reliable performance. The dataset presented in this work will be publicly accessible at http://smt.sjtu.edu.cn.
110 - Qi Yang , Zhan Ma , Yiling Xu 2020
We propose the GraphSIM -- an objective metric to accurately predict the subjective quality of point cloud with superimposed geometry and color impairments. Motivated by the facts that human vision system is more sensitive to the high spatial-frequen cy components (e.g., contours, edges), and weighs more to the local structural variations rather individual point intensity, we first extract geometric keypoints by resampling the reference point cloud geometry information to form the object skeleton; we then construct local graphs centered at these keypoints for both reference and distorted point clouds, followed by collectively aggregating color gradient moments (e.g., zeroth, first, and second) that are derived between all other points and centered keypoint in the same local graph for significant feature similarity (a.k.a., local significance) measurement; Final similarity index is obtained by pooling the local graph significance across all color channels and by averaging across all graphs. Our GraphSIM is validated using two large and independent point cloud assessment datasets that involve a wide range of impairments (e.g., re-sampling, compression, additive noise), reliably demonstrating the state-of-the-art performance for all distortions with noticeable gains in predicting the subjective mean opinion score (MOS), compared with those point-wise distance-based metrics adopted in standardization reference software. Ablation studies have further shown that GraphSIM is generalized to various scenarios with consistent performance by examining its key modules and parameters.
250 - Ming Lu , Ming Cheng , Yiling Xu 2019
Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video comp ression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually.
In this paper, we present an end-to-end view of IoT security and privacy and a case study. Our contribution is three-fold. First, we present our end-to-end view of an IoT system and this view can guide risk assessment and design of an IoT system. We identify 10 basic IoT functionalities that are related to security and privacy. Based on this view, we systematically present security and privacy requirements in terms of IoT system, software, networking and big data analytics in the cloud. Second, using the end-to-end view of IoT security and privacy, we present a vulnerability analysis of the Edimax IP camera system. We are the first to exploit this system and have identified various attacks that can fully control all the cameras from the manufacturer. Our real-world experiments demonstrate the effectiveness of the discovered attacks and raise the alarms again for the IoT manufacturers. Third, such vulnerabilities found in the exploit of Edimax cameras and our previous exploit of Edimax smartplugs can lead to another wave of Mirai attacks, which can be either botnets or worm attacks. To systematically understand the damage of the Mirai malware, we model propagation of the Mirai and use the simulations to validate the modeling. The work in this paper raises the alarm again for the IoT device manufacturers to better secure their products in order to prevent malware attacks like Mirai.
154 - Shaowei Xie , Qiu Shen , Yiling Xu 2018
Immersive video offers the freedom to navigate inside virtualized environment. Instead of streaming the bulky immersive videos entirely, a viewport (also referred to as field of view, FoV) adaptive streaming is preferred. We often stream the high-qua lity content within current viewport, while reducing the quality of representation elsewhere to save the network bandwidth consumption. Consider that we could refine the quality when focusing on a new FoV, in this paper, we model the perceptual impact of the quality variations (through adapting the quantization stepsize and spatial resolution) with respect to the refinement duration, and yield a product of two closed-form exponential functions that well explain the joint quantization and resolution induced quality impact. Analytical model is cross-validated using another set of data, where both Pearson and Spearmans rank correlation coefficients are close to 0.98. Our work is devised to optimize the adaptive FoV streaming of the immersive video under limited network resource. Numerical results show that our proposed model significantly improves the quality of experience of users, with about 9.36% BD-Rate (Bjontegaard Delta Rate) improvement on average as compared to other representative methods, particularly under the limited bandwidth.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا