ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-insulator transitions involve a mix of charge, spin, and structural degrees of freedom, and when strongly-correlated, can underlay the emergence of exotic quantum states. Mott insulators induced by the opening of a Coulomb gap are an important and well-recognized class of transitions, but insulators purely driven by spin correlations are much less common, as the reduced energy scale often invites competition from other degrees of freedom. Here we demonstrate a clean example of a spin-correlation-driven metal-insulator transition in the all-in-all-out pyrochlore antiferromagnet Cd2Os2O7, where the lattice symmetry is fully preserved by the antiferromagnetism. After the antisymmetric linear magnetoresistance from conductive, ferromagnetic domain walls is carefully removed experimentally, the Hall coefficient of the bulk reveals four Fermi surfaces, two of electron type and two of hole type, sequentially departing the Fermi level with decreasing temperature below the Neel temperature, T_N. Contrary to the common belief of concurrent magnetic and metal-insulator transitions in Cd2Os2O7, the charge gap of a continuous metal-insulator transition opens only at T~10K, well below T_N=227K. The insulating mechanism resolved by the Hall coefficient parallels the Slater picture, but without a folded Brillouin zone, and contrasts sharply with the behavior of Mott insulators and spin density waves, where the electronic gap opens above and at T_N, respectively.
Magnetism and superconductivity often compete for preeminence as a materials ground state, and in the right circumstances the fluctuating remains of magnetic order can induce superconducting pairing. The intertwining of the two on the microscopic lev el, independent of lattice excitations, is especially pronounced in heavy fermion compounds, rare earth cuprates, and iron pnictides. Here we point out that for a helical arrangement of localized spins, a variable magnetic pitch length provides a unique tuning process from ferromagnetic to antiferromagnetic ground state in the long and short wavelength limits, respectively. Such chemical or pressure adjustable helical order naturally provides the possibility for continuous tuning between ferromagnetically and antiferromagnetically mediated superconductivity. At the same time, phonon mediated superconductivity is suppressed because of the local ferromagnetic spin configuration. We employ synchrotron-based magnetic x-ray diffraction techniques to test these ideas in the recently discovered superconductor, MnP. This sensitive probe directly reveals a reduced-moment, helical spin order at high pressure proximate to the superconducting state, with a tightened pitch in comparison to that at ambient pressure where superconductivity is absent. The correlation between magnetic pitch length and superconducting transition temperature in the (Cr/Mn/Fe)(P/As) family suggests a strategy for using spiral magnets as interlocutors for spin fluctuation mediated superconductivity.
Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an x-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pr essure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase, and, in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the longstanding expectations of enhanced quantum fluctuations in low dimensional systems, and may help to constrain theories of the quantum critical Fermi surface.
The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are measured directly with non-resonant x-ray diffraction as the system is driven towards its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly-coupled, BCS-like ground state. Evidence for the coexistence of this weakly-coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling.
We report non-resonant x-ray Raman scattering (XRS) measurements from hexagonal boron nitride for transferred momentum from 2 to 9 $mathrm{AA}^{-1}$ along directions both in and out of the basal plane. A symmetry-based argument, together with real-sp ace full multiple scattering calculations of the projected density of states in the spherical harmonics basis, reveals that a strong pre-edge feature is a dominantly $Y_{10}$-type Frenkel exciton with no other textit{s}-, textit{p}-, or textit{d}- components. This conclusion is supported by a second, independent calculation of the textbf{q}-dependent XRS cross-section based on the Bethe-Salpeter equation.
Elemental chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero by applying large pressures. We combine diamond anvil cell and synchrotron x-ray diffraction techniques to measure directly the spin and charge order in the pure metal at the approach to its quantum critical point. Both spin and charge order are suppressed exponentially with pressure, well beyond the region where disorder cuts off such a simple evolution, and they maintain a harmonic scaling relationship over decades in scattering intensity. By comparing the development of the order parameter with that of the magnetic wavevector, it is possible to ascribe the destruction of antiferromagnetism to the growth in electron kinetic energy relative to the underlying magnetic exchange interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا