ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - Ye Xue , Diego Klabjan , Yuan Luo 2021
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices. The heterogeneity of client datasets is one of the most impor tant challenges of federated learning algorithms. Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data. Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients. In this work, we tackle this challenge in a different view by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID data.
With the growing popularity of cloud storage, removing duplicated data across users is getting more critical for service providers to reduce costs. Recently, Data resemblance detection is a novel technology to detect redundancy among similarity. It e xtracts feature from each chunk content and treat chunks with high similarity as candidates for removing redundancy. However, popular resemblance methods such as N-transform and Finesse use only the chunk data for feature extraction. A minor modification on the data chunk could seriously deteriorate its capability for resemblance detection. In this paper, we proposes a novel chunk-context aware resemblance detection algorithm, called CARD, to mitigate this issue. CARD introduces a BP-Neural network-based chunk-context aware model, and uses N-sub-chunk shingles-based initial feature extraction strategy. It effectively integrates each data chunk contents internal structure with the context information for feature extraction, the impact of small changes in data chunks is significantly reduced. To evaluate its performance, we implement a CARD prototype and conduct extensive experiments using real-world data sets. The results show that CARD can detect up to 75.03% more redundant data and accelerate the resemblance detection operations by 5.6 to 17.8 times faster compared with the state-of-the-art resemblance detection approaches.
106 - Ye Xue , Vincent Lau , 2021
Sparse coding is a class of unsupervised methods for learning a sparse representation of the input data in the form of a linear combination of a dictionary and a sparse code. This learning framework has led to state-of-the-art results in various imag e and video processing tasks. However, classical methods learn the dictionary and the sparse code based on alternating optimizations, usually without theoretical guarantees for either optimality or convergence due to non-convexity of the problem. Recent works on sparse coding with a complete dictionary provide strong theoretical guarantees thanks to the development of the non-convex optimization. However, initial non-convex approaches learn the dictionary in the sparse coding problem sequentially in an atom-by-atom manner, which leads to a long execution time. More recent works seek to directly learn the entire dictionary at once, which substantially reduces the execution time. However, the associated recovery performance is degraded with a finite number of data samples. In this paper, we propose an efficient sparse coding scheme with a two-stage optimization. The proposed scheme leverages the global and local Riemannian geometry of the two-stage optimization problem and facilitates fast implementation for superb dictionary recovery performance by a finite number of samples without atom-by-atom calculation. We further prove that, with high probability, the proposed scheme can exactly recover any atom in the target dictionary with a finite number of samples if it is adopted to recover one atom of the dictionary. An application on wireless sensor data compression is also proposed. Experiments on both synthetic and real-world data verify the efficiency and effectiveness of the proposed scheme.
438 - Ye Xue , Vincent Lau 2021
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do an alternative optimization of both the dictionary and the sparse code; the other way is to optimize the dictionary by restricting it over the orthogonal group. The latter one is called orthogonal dictionary learning which has a lower complexity implementation, hence, it is more favorable for lowcost devices. However, existing schemes on orthogonal dictionary learning only work with batch data and can not be implemented online, which is not applicable for real-time applications. This paper proposes a novel online orthogonal dictionary scheme to dynamically learn the dictionary from streaming data without storing the historical data. The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis. In the problem formulation, we relax the orthogonal constraint to enable an efficient online algorithm. In the algorithm design, we propose a new Frank-Wolfe-based online algorithm with a convergence rate of O(ln t/t^(1/4)). The convergence rate in terms of key system parameters is also derived. Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed online orthogonal dictionary learning scheme.
Wireless backhaul is considered to be the key part of the future wireless network with dense small cell traffic and high capacity demand. In this paper, we focus on the design of a high spectral efficiency line-of-sight (LoS) multiple-input multiple- output (MIMO) system for millimeter wave (mmWave) backhaul using dual-polarized frequency division duplex (FDD). High spectral efficiency is very challenging to achieve for the system due to various physical impairments such as phase noise (PHN), timing offset (TO) as well as the poor condition number of the LoS MIMO. In this paper, we propose a holistic solution containing TO compensation, PHN estimation, precoder/decorrelator optimization of the LoS MIMO for wireless backhaul, and the interleaving of each part. We show that the proposed solution has robust performance with end-to-end spectral efficiency of 60 bits/s/Hz for 8x8 MIMO.
97 - Ye Xue , Yifei Shen , Vincent Lau 2020
Massive MIMO has been regarded as a key enabling technique for 5G and beyond networks. Nevertheless, its performance is limited by the large overhead needed to obtain the high-dimensional channel information. To reduce the huge training overhead asso ciated with conventional pilot-aided designs, we propose a novel blind data detection method by leveraging the channel sparsity and data concentration properties. Specifically, we propose a novel $ell_3$-norm-based formulation to recover the data without channel estimation. We prove that the global optimal solution to the proposed formulation can be made arbitrarily close to the transmitted data up to a phase-permutation ambiguity. We then propose an efficient parameter-free algorithm to solve the $ell_3$-norm problem and resolve the phase permutation ambiguity. We also derive the convergence rate in terms of key system parameters such as the number of transmitters and receivers, the channel noise power, and the channel sparsity level. Numerical experiments will show that the proposed scheme has superior performance with low computational complexity.
82 - Yifei Shen , Ye Xue , Jun Zhang 2020
Dictionary learning is a classic representation learning method that has been widely applied in signal processing and data analytics. In this paper, we investigate a family of $ell_p$-norm ($p>2,p in mathbb{N}$) maximization approaches for the comple te dictionary learning problem from theoretical and algorithmic aspects. Specifically, we prove that the global maximizers of these formulations are very close to the true dictionary with high probability, even when Gaussian noise is present. Based on the generalized power method (GPM), an efficient algorithm is then developed for the $ell_p$-based formulations. We further show the efficacy of the developed algorithm: for the population GPM algorithm over the sphere constraint, it first quickly enters the neighborhood of a global maximizer, and then converges linearly in this region. Extensive experiments will demonstrate that the $ell_p$-based approaches enjoy a higher computational efficiency and better robustness than conventional approaches and $p=3$ performs the best.
316 - Ye Xue , Diego Klabjan , Yuan Luo 2019
The problem of missing values in multivariable time series is a key challenge in many applications such as clinical data mining. Although many imputation methods show their effectiveness in many applications, few of them are designed to accommodate c linical multivariable time series. In this work, we propose a multiple imputation model that capture both cross-sectional information and temporal correlations. We integrate Gaussian processes with mixture models and introduce individualized mixing weights to handle the variance of predictive confidence of Gaussian process models. The proposed model is compared with several state-of-the-art imputation algorithms on both real-world and synthetic datasets. Experiments show that our best model can provide more accurate imputation than the benchmarks on all of our datasets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا