ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be bu ilt. In this work, wefocus on developing a unified model (UniST) which supports streaming and non-streaming ST from the perspective of fundamental components, including training objective, attention mechanism and decoding policy. Experiments on the most popular speech-to-text translation benchmark dataset, MuST-C, show that UniST achieves significant improvement for non-streaming ST, and a better-learned trade-off for BLEU score and latency metrics for streaming ST, compared with end-to-end baselines and the cascaded models. We will make our codes and evaluation tools publicly available.
Developing a unified multilingual model has long been a pursuit for machine translation. However, existing approaches suffer from performance degradation -- a single multilingual model is inferior to separately trained bilingual ones on rich-resource languages. We conjecture that such a phenomenon is due to interference caused by joint training with multiple languages. To accommodate the issue, we propose CIAT, an adapted Transformer model with a small parameter overhead for multilingual machine translation. We evaluate CIAT on multiple benchmark datasets, including IWSLT, OPUS-100, and WMT. Experiments show that CIAT consistently outperforms strong multilingual baselines on 64 of total 66 language directions, 42 of which see above 0.5 BLEU improvement. Our code is available at url{https://github.com/Yaoming95/CIAT}~.
Knowledge base is one of the main forms to represent information in a structured way. A knowledge base typically consists of Resource Description Frameworks (RDF) triples which describe the entities and their relations. Generating natural language de scription of the knowledge base is an important task in NLP, which has been formulated as a conditional language generation task and tackled using the sequence-to-sequence framework. Current works mostly train the language models by maximum likelihood estimation, which tends to generate lousy sentences. In this paper, we argue that such a problem of maximum likelihood estimation is intrinsic, which is generally irrevocable via changing network structures. Accordingly, we propose a novel Triple-to-Text (T2T) framework, which approximately optimizes the inverse Kullback-Leibler (KL) divergence between the distributions of the real and generated sentences. Due to the nature that inverse KL imposes large penalty on fake-looking samples, the proposed method can significantly reduce the probability of generating low-quality sentences. Our experiments on three real-world datasets demonstrate that T2T can generate higher-quality sentences and outperform baseline models in several evaluation metrics.
This paper presents a systematic survey on recent development of neural text generation models. Specifically, we start from recurrent neural network language models with the traditional maximum likelihood estimation training scheme and point out its shortcoming for text generation. We thus introduce the recently proposed methods for text generation based on reinforcement learning, re-parametrization tricks and generative adversarial nets (GAN) techniques. We compare different properties of these models and the corresponding techniques to handle their common problems such as gradient vanishing and generation diversity. Finally, we conduct a benchmarking experiment with different types of neural text generation models on two well-known datasets and discuss the empirical results along with the aforementioned model properties.
328 - Yaoming Zhu , Sidi Lu , Lei Zheng 2018
We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and facilitate the sharing of fine-tuned open-source implementations among researchers for their work. As a consequence, this would help in improving the reproductivity and reliability of future research work in text generation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا