ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Text Generation: Past, Present and Beyond

68   0   0.0 ( 0 )
 نشر من قبل Sidi Lu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a systematic survey on recent development of neural text generation models. Specifically, we start from recurrent neural network language models with the traditional maximum likelihood estimation training scheme and point out its shortcoming for text generation. We thus introduce the recently proposed methods for text generation based on reinforcement learning, re-parametrization tricks and generative adversarial nets (GAN) techniques. We compare different properties of these models and the corresponding techniques to handle their common problems such as gradient vanishing and generation diversity. Finally, we conduct a benchmarking experiment with different types of neural text generation models on two well-known datasets and discuss the empirical results along with the aforementioned model properties.



قيم البحث

اقرأ أيضاً

Two important tasks at the intersection of knowledge graphs and natural language processing are graph-to-text (G2T) and text-to-graph (T2G) conversion. Due to the difficulty and high cost of data collection, the supervised data available in the two f ields are usually on the magnitude of tens of thousands, for example, 18K in the WebNLG~2017 dataset after preprocessing, which is far fewer than the millions of data for other tasks such as machine translation. Consequently, deep learning models for G2T and T2G suffer largely from scarce training data. We present CycleGT, an unsupervised training method that can bootstrap from fully non-parallel graph and text data, and iteratively back translate between the two forms. Experiments on WebNLG datasets show that our unsupervised model trained on the same number of data achieves performance on par with several fully supervised models. Further experiments on the non-parallel GenWiki dataset verify that our method performs the best among unsupervised baselines. This validates our framework as an effective approach to overcome the data scarcity problem in the fields of G2T and T2G. Our code is available at https://github.com/QipengGuo/CycleGT.
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., word choices, sentence structures). More traditional systems use templates to determine th e realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as soft templates. That is, the model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the content record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been pr oposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
We motivate and propose a suite of simple but effective improvements for concept-to-text generation called SAPPHIRE: Set Augmentation and Post-hoc PHrase Infilling and REcombination. We demonstrate their effectiveness on generative commonsense reason ing, a.k.a. the CommonGen task, through experiments using both BART and T5 models. Through extensive automatic and human evaluation, we show that SAPPHIRE noticeably improves model performance. An in-depth qualitative analysis illustrates that SAPPHIRE effectively addresses many issues of the baseline model generations, including lack of commonsense, insufficient specificity, and poor fluency.
Recent neural models for data-to-text generation are mostly based on data-driven end-to-end training over encoder-decoder networks. Even though the generated texts are mostly fluent and informative, they often generate descriptions that are not consi stent with the input structured data. This is a critical issue especially in domains that require inference or calculations over raw data. In this paper, we attempt to improve the fidelity of neural data-to-text generation by utilizing pre-executed symbolic operations. We propose a framework called Operation-guided Attention-based sequence-to-sequence network (OpAtt), with a specifically designed gating mechanism as well as a quantization module for operation results to utilize information from pre-executed operations. Experiments on two sports datasets show our proposed method clearly improves the fidelity of the generated texts to the input structured data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا