ترغب بنشر مسار تعليمي؟ اضغط هنا

We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $mu$m and 500 $mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$times$10$^{12}$ $-$ 1$times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_odot$ to 9.5 M$_odot$. The masses of NH$_3$ leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests these leaves are gravitationally unbound structures. 9 out of 39 NH$_3$ leaves are gravitationally bound and 7 out of 9 gravitationally bound NH$_3$ leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure-confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.
We present 107 maps of continuum emission at 350 microns from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with 3 additional maps covering star forming regions in the outer Ga laxy. The higher resolution of the SHARC-II images (8.5 beam) compared with the 1.1 mm images from BGPS (33 beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 micron maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3 K and mean of 16.3 +- 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH3 observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than two substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 microns compared to the mass of their parental clump is ~0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm^(-2), and 18 (6%) exceed 1.0 g cm^(-2), thresholds for massive star formation suggested by theorists.
The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe t he basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is constant, and address the distinction between beam- and source-averaged column densities. We conclude our discussion of the molecular column density with worked examples for C$^{18}$O, C$^{17}$O, N$_2$H$^+$, NH$_3$, and H$_2$CO. Ancillary information on some subtleties involving line profile functions, conversion between integrated flux and brightness temperature, the calculation of the uncertainty associated with an integrated intensity measurement, the calculation of spectral line optical depth using hyperfine or isotopologue measurements, the calculation of the kinetic temperature from a symmetric molecule excitation temperature measurement, and relative hyperfine intensity calculations for NH$_3$ are presented in appendices. The intent of this document is to provide a reference for researchers studying astrophysical molecular spectroscopic measurements.
The optically thin critical densities and the effective excitation densities to produce a 1 K km/s (or 0.818 Jy km/s $(frac{ u_{jk}}{100 rm{GHz}})^2 , (frac{theta_{beam}}{10^{primeprime}})^2$) spectral line are tabulated for 12 commonly observed dens e gas molecular tracers. The dependence of the critical density and effective excitation density on physical assumptions (i.e. gas kinetic temperature and molecular column density) is analyzed. Critical densities for commonly observed dense gas transitions in molecular clouds (i.e. HCN $1-0$, HCO$^+$ $1-0$, N$_2$H$^+$ $1-0$) are typically $1 - 2$ orders of magnitude larger than effective excitation densities because the standard definitions of critical density do not account for radiative trapping and 1 K km/s lines are typically produced when radiative rates out of the upper energy level of the transition are faster than collisional depopulation. The use of effective excitation density has a distinct advantage over the use of critical density in characterizing the differences in density traced by species such as NH$_3$, HCO$^+$, N$_2$H$^+$, and HCN as well as their isotpologues; but, the effective excitation density has the disadvantage that it is undefined for transitions when $E_u/k gg T_k$, for low molecular column densities, and for heavy molecules with complex spectra (i.e. CH$_3$CHO).
215 - Yancy L. Shirley 2013
The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of dense clumps of dust throughout the Galaxy covering 170 square degrees. We present spectroscopic observations using the Heinrich Hertz Submillimeter Telescope of the dense gas t racers, HCO+ and N2H+ 3-2, for all 6194 sources in the Bolocam Galactic Plane Survey v1.0.1 catalog between 7.5 <= l <= 194 degrees. This is the largest targeted spectroscopic survey of dense molecular gas in the Milky Way to date. We find unique velocities for 3126 (50.5%) of the BGPS v1.0.1 sources observed. Strong N2H+ 3-2 emission (T_{mb} > 0.5 K) without HCO+ 3-2 emission does not occur in this catalog. We characterize the properties of the dense molecular gas emission toward the entire sample. HCO+ is very sub-thermally populated and the 3-2 transitions are optically thick toward most BGPS clumps. The median observed line width is 3.3 km/s consistent with supersonic turbulence within BGPS clumps. We find strong correlations between dense molecular gas integrated intensities and 1.1 mm peak flux and the gas kinetic temperature derived from previously published NH3 observations. These intensity correlations are driven by the sensitivity of the 3-2 transitions to excitation conditions rather than by variations in molecular column density or abundance. We identify a subset of 113 sources with stronger N2H+ than HCO+ integrated intensity, but we find no correlations between the N2H+ / HCO+ ratio and 1.1 mm continuum flux density, gas kinetic temperature, or line width. Self-absorbed profiles are rare (1.3%).
In order to understand the collapse dynamics of observed low-mass starless cores, we revise the conventional stability condition of hydrostatic Bonnor-Ebert spheres to take internal motions into account. Because observed starless cores resemble Bonno r-Ebert density structures, the stability and dynamics of the starless cores are frequently analyzed by comparing to the conventional stability condition of a hydrostatic Bonnor-Ebert sphere. However, starless cores are not hydrostatic but have observed internal motions. In this study, we take gaseous spheres with a homologous internal velocity field and derive stability conditions of the spheres utilizing a virial analysis. We propose two limiting models of spontaneous gravitational collapse: the collapse of critical Bonnor-Ebert spheres and uniform density spheres. The collapse of these two limiting models are intended to provide the lower and the upper limits, respectively, of the infall speeds for a given density structure. The results of our study suggest that the stability condition sensitively depends on internal motions. A homologous inward motion with a transonic speed can reduce the critical size compared to the static Bonnor-Ebert sphere by more than a factor of two. As an application of the two limiting models of spontaneous gravitational collapse, we compare the density structures and infall speeds of the observed starless cores L63, L1544, L1689B, and L694-2 to the two limiting models. L1689B and L694-2 seem to have been perturbed to result in faster infall motions than for spontaneous gravitational collapse.
We present a systematic single-dish search for molecular outflows toward a sample of 9 candidate low-luminosity protostars and 30 candidate Very Low Luminosity Objects (VeLLOs; L_int < 0.1 L_sun). The sources are identified using data from the Spitze r Space Telescope catalogued by Dunham et al. toward nearby (D < 400 pc) star forming regions. Each object was observed in 12CO and 13CO J = 2-1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30 arcsecond resolution. Using 5-point grid maps we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A IRS3 outflow is detected but not remapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.
Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-m ass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (kaprat) and the submillimeter opacity power-law index ($kappa propto lambda^{-beta}$). Using the average value of theoretical dust opacity models at 2.2 micron, we constrain the dust opacity at 850 and 450 micron . Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are $frac{kappa_{850}}{kappa_{2.2}} = (3.21 - 4.80)^{+0.44}_{-0.30} times 10^{-4}$ and $frac{kappa_{450}}{kappa_{2.2}} = (12.8 - 24.8)^{+2.4}_{-1.3} times 10^{-4}$ with a submillimeter opacity power-law index of $beta_{smm} = (2.18 - 2.58)^{+0.30}_{-0.30}$. The range of quoted values are determined from the uncertainty in the physical model for B335. For an average 2.2 micron opacity of $3800 pm 700$ cm$^2$g$^{-1}$, we find a dust opacity at 850 and 450 micron of $kappa_{850} = (1.18 - 1.77)^{+0.36}_{-0.24}$ and $kappa_{450} = (4.72 - 9.13)^{+1.9}_{-0.98}$ cm$^2$g$^{-1}$ of dust. These opacities are from $(0.65 - 0.97) kappa^{rm{OH}5}_{850}$ of the widely used theoretical opacities of Ossenkopf and Henning for coagulated ice grains with thin mantles at 850micron.
We present observations of six Class 0 protostars at 3.3 mm (90 GHz) using the 64-pixel MUSTANG bolometer camera on the 100-m Green Bank Telescope. The 3.3 mm photometry is analyzed along with shorter wavelength observations to derive spectral indice s (S_nu ~ nu^alpha) of the measured emission. We utilize previously published dust continuum radiative transfer models to estimate the characteristic dust temperature within the central beam of our observations. We present constraints on the millimeter dust opacity index, beta, between 0.862 mm, 1.25 mm, and 3.3 mm. Beta_mm typically ranges from 1.0 to 2.4 for Class 0 sources. The relative contributions from disk emission and envelope emission are estimated at 3.3 mm. L483 is found to have negligible disk emission at 3.3 mm while L1527 is dominated by disk emission within the central beam. The beta_mm^disk <= 0.8 - 1.4 for L1527 indicates that grain growth is likely occurring in the disk. The photometry presented in this paper may be combined with future interferometric observations of Class 0 envelopes and disks.
I review the basic processes that may be used to develop a chemical evolutionary sequence for low-mass starless cores. I highlight observational results from the Arizona Radio Observatory-Green Bank Survey. Observations were performed with the SMT 10 -m, ARO 12-m, and GBT 100-m toward a sample of 25 nearby (D < 400 pc) low-mass starless cores which have radiative transfer models of the 850 $mu$m emission and observed SED (160 - 1300 um). The cores were observed in the lines of NH3 (1,1) and (2,2), o-NH2D 1_{11} - 1_{01}, C2S 1_2 - 2_1, C3S 4 - 3, HCN 1 - 0, HC5N 9 - 8, HC7N 21 - 20, C18O and C17O 2 - 1, and p-H2CO 1_{01} - 0_{00}.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا