ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational Constraints on Submillimeter Dust Opacity

134   0   0.0 ( 0 )
 نشر من قبل Yancy L. Shirley
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-mass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (kaprat) and the submillimeter opacity power-law index ($kappa propto lambda^{-beta}$). Using the average value of theoretical dust opacity models at 2.2 micron, we constrain the dust opacity at 850 and 450 micron . Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are $frac{kappa_{850}}{kappa_{2.2}} = (3.21 - 4.80)^{+0.44}_{-0.30} times 10^{-4}$ and $frac{kappa_{450}}{kappa_{2.2}} = (12.8 - 24.8)^{+2.4}_{-1.3} times 10^{-4}$ with a submillimeter opacity power-law index of $beta_{smm} = (2.18 - 2.58)^{+0.30}_{-0.30}$. The range of quoted values are determined from the uncertainty in the physical model for B335. For an average 2.2 micron opacity of $3800 pm 700$ cm$^2$g$^{-1}$, we find a dust opacity at 850 and 450 micron of $kappa_{850} = (1.18 - 1.77)^{+0.36}_{-0.24}$ and $kappa_{450} = (4.72 - 9.13)^{+1.9}_{-0.98}$ cm$^2$g$^{-1}$ of dust. These opacities are from $(0.65 - 0.97) kappa^{rm{OH}5}_{850}$ of the widely used theoretical opacities of Ossenkopf and Henning for coagulated ice grains with thin mantles at 850micron.



قيم البحث

اقرأ أيضاً

The submillimeter opacity of dust in the diffuse Galactic interstellar medium (ISM) has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used three BLAST bands at 250, 350, and 500 mu m and one IRAS at 100 mu m. The proxy is the near-infrared color excess, E(J-Ks), obtained from 2MASS. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity sigma_e(1200) at 1200 GHz can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N_H > 10^{22} cm^-2) and small enough to ensure a uniform T. We find sigma_e(1200) is typically 2 to 4 x 10^{-25} cm^2/H and thus about 2 to 4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (re-radiated) by the dust, reflecting changes in the interstellar radiation field and/or the dust absorption opacity. These changes affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower T, the trend of increasing opacity with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted.
We present a synthesis of the astronomical observations constraining the wavelength-dependent extinction, emission, and polarization from interstellar dust from UV to microwave wavelengths on diffuse Galactic sightlines. Representative solid phase ab undances for those sightlines are also derived. Given the sensitive new observations of polarized dust emission provided by the Planck satellite, we place particular emphasis on dust polarimetry, including continuum polarized extinction, polarization in the carbonaceous and silicate spectroscopic features, the wavelength-dependent polarization fraction of the dust emission, and the connection between optical polarized extinction and far-infrared polarized emission. Together, these constitute a set of constraints that should be reproduced by models of dust in the diffuse interstellar medium.
We use current measurements of the expansion rate $H(z)$ and cosmic background radiation bounds on the spatial curvature of the Universe to impose cosmological model-independent constraints on cosmic opacity. To perform our analyses, we compare opaci ty-free distance modulus from $H(z)$ data with those from two supernovae Ia compilations: the Union2.1 plus the most distant spectroscopically confirmed SNe Ia (SNe Ia SCP-0401 $z=1.713$) and two Sloan Digital Sky Survey (SDSS) subsamples. The influence of different SNe Ia light-curve fitters (SALT2 and MLCS2K2) on the results is also verified. We find that a completely transparent universe is in agreement with the largest sample in our analysis (Union 2.1 plus SNe Ia SCP-0401). For SDSS sample a such universe it is compatible at $< 1.5sigma$ level regardless the SNe Ia light-curve fitting used.
63 - M. Juvela , K. Demyk , Y. Doi 2015
The Galactic Cold Cores project has made Herschel observations of 116 fields where the Planck survey has found signs of cold dust emission. The fields contain sources in different environments and different phases of star formation. The dust opacity spectral index beta and the dust colour temperature T are derived using Herschel and Planck data. The relation between beta and T is examined for the whole sample and inside individual fields. Based on IRAS and Planck data, the fields are characterised by a median colour temperature of 16.1 K and a median opacity spectral index of beta=1.84. We observe a clear T-beta anti-correlation. In Herschel observations, constrained at lower resolution by Planck data, the variations follow the column density structure and beta(FIR) can rise to ~2.2 in individual clumps. The Planck 217 GHz band shows a systematic excess that is consistent with a general flattening of the dust emission spectrum at millimetre wavelengths. When fitted separately below and above 700 um, the median spectral index values are beta(FIR) ~ 1.91 and beta(mm) ~ 1.66. The spectral index changes as a function of column density and wavelength. Beta variations are partly masked by temperature gradients and the changes in the intrinsic grain properties may be even greater.
Context: The study of dust emission at millimeter wavelengths is important to shed light on the dust properties and physical structure of pre-stellar cores, the initial conditions in the process of star and planet formation. Aims: Using two new conti nuum facilities, AzTEC at the LMT and MUSTANG-2 at the GBO, we aim to detect changes in the optical properties of dust grains as a function of radius for the well-known pre-stellar core L1544. Methods: We determine the emission profiles at 1.1 and 3.3 mm and examine whether they can be reproduced in terms of the current best physical models for L1544. We also make use of various tools to determine the radial distributions of the density, temperature, and the dust opacity in a self-consistent manner. Results: We find that our observations cannot be reproduced without invoking opacity variations. With the new data, new temperature and density profiles, as well as opacity variations across the core, have been derived. The opacity changes are consistent with the expected variations between uncoagulated bare grains, toward the outer regions of the core, and grains with thick ice mantles, toward the core center. A simple analytical grain growth model predicts the presence of grains of ~3-4 um within the central 2000 au for the new density profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا