ﻻ يوجد ملخص باللغة العربية
We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $mu$m and 500 $mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$times$10$^{12}$ $-$ 1$times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_odot$ to 9.5 M$_odot$. The masses of NH$_3$ leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests these leaves are gravitationally unbound structures. 9 out of 39 NH$_3$ leaves are gravitationally bound and 7 out of 9 gravitationally bound NH$_3$ leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure-confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.
We present deep CCS and HC$_7$N observations of the L1495-B218 filaments in the Taurus molecular cloud obtained using the K-band focal plane array on the 100m Green Bank Telescope. We observed the L1495-B218 filaments in CCS $J_N$ = 2$_1$$-$1$_0$ and
(Abridged) Context. Core condensation is a critical step in the star-formation process, but is still poorly characterized observationally. Aims. We have studied the 10 pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed
(Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the d
We present a catalogue of dense cores in a $sim 4^circtimes2^circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m, and 500 $mu$
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associate