ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the circumstellar disk in the Bok globule CB 26 at 110, 230, and 270 GHz are presented together with the results of the simulations and estimates of the disk parameters. These observations were obtained using the SMA, IRAM Plateau de Bure, and OVRO interferometers. The maps have relatively high angular resolutions (0.4-1), making it possible to study the spatial structure of the gas-dust disk. The disk parameters are reconstructed via a quantitative comparison of observational and theoretical intensity maps. The disk model used to construct the theoretical maps is based on the assumption of hydrostatic and radiative equilibrium in the vertical direction, while the radial surface density profile is described phenomenologically. The system of equations for the transfer of the infrared and ultraviolet radiation is solved in the vertical direction, in order to compute the thermal structure of the disk. The disk best-fit parameters are derived for each map and all the maps simultaneously, using a conjugate gradient method. The degrees of degeneracy of the parameters describing the thermal structure and density distribution of the disk are analyzed in detail. All three maps indicate the presence of an inner dust-free region with a radius of approximately 35 AU, in agreement with the conclusions of other studies. The inclination of the disk is 78 deg, which is smaller than the value adopted in our earlier study of rotating molecular outflows from CB 26. The model does not provide any evidence for the growth of dust particles above a_max=0.02 cm.
We study details of the UV radiation transfer in a protoplanetary disk, paying attention to the influence of dust growth and sedimentation on the disk density and temperature. Also, we show how the dust evolution affects photoreaction rates of key molecules, like CN and CS.
The disk-outflow connection is thought to play a key role in extracting excess angular momentum from a forming proto-star. Though jet rotation has been observed in a few objects, no rotation of molecular outflows has been unambiguously reported so fa r. We report new millimeter-interferometric observations of the edge-on T Tauri star - disk system in the isolated Bok globule CB26. The aim of these observations was to study the disk-outflow relation in this 1Myr old low-mass young stellar object. The IRAM PdBI array was used to observe 12CO(2-1) at 1.3mm in two configurations, resulting in spectral line maps with 1.5 arcsec resolution. We use an empirical parameterized steady-state outflow model combined with 2-D line radiative transfer calculations and chi^2-minimization in parameter space to derive a best-fit model and constrain parameters of the outflow. The data reveal a previously undiscovered collimated bipolar molecular outflow of total length ~2000 AU, escaping perpendicular to the plane of the disk. We find peculiar kinematic signatures that suggest the outflow is rotating with the same orientation as the disk. However, we could not ultimately exclude jet precession or two misaligned flows as possible origin of the observed peculiar velocity field. There is indirect indication that the embedded driving source is a binary system, which, together with the youth of the source, could provide the clue to the observed kinematic features of the outflow. CB26 is so far the most promising source to study the rotation of a molecular outflow. Assuming that the outflow is rotating, we compute and compare masses, mass flux, angular momenta, and angular momentum flux of disk and outflow and derive disk dispersal timescales of 0.5...1 Myr, comparable to the age of the system.
We investigate general aspects of molecular line formation under conditions which are typical of prestellar cores. Focusing on simple linear molecules, we study formation of their rotational lines by radiative transfer simulations. We present a therm alization diagram to show the effects of collisions and radiation on the level excitation. We construct a detailed scheme (contribution chart) to illustrate the formation of emission line profiles. This chart can be used as an efficient tool to identify which parts of the cloud contribute to a specific line profile. We show how molecular line characteristics for uniform model clouds depend on hydrogen density, molecular column density, and kinetic temperature. The results are presented in a 2D plane to illustrate cooperative effects of the physical factors. We also use a core model with a non-uniform density distribution and chemical stratification to study the effects of cloud contraction and rotation on spectral line maps. We discuss the main issues that should be taken into account when dealing with interpretation and simulation of observed molecular lines.
390 - D. Semenov 2008
We predict how protoplanetary disks around low-mass young stars would appear in molecular lines observed with the ALMA interferometer. Our goal is to identify those molecules and transitions that can be used to probe and distinguish between chemical and physical disk structure and to define necessary requirements for ALMA observations. Disk models with and without vertical temperature gradient as well as with uniform abundances and those from a chemical network are considered. As an example, we show the channel maps of HCO$^+$(4-3) synthesized with a non-LTE line radiative transfer code and used as an input to the GILDAS ALMA simulator to produce noise-added realistic images. The channel maps reveal complex asymmetric patterns even for the model with uniform abundances and no vertical thermal gradient. We find that a spatial resolution of $0.2-0.5arcsec$ and 0.5--10 hours of integration time will be needed to disentangle large-scale temperature gradients and the chemical stratification in disks in lines of abundant molecules.
Molecular line observations of starless (prestellar) cores combined with a chemical evolution modeling and radiative transfer calculations are a powerful tool to study the earliest stages of star formation. However, conclusions drawn from such a mode ling may noticeably depend on the assumed thermal structure of the cores. The assumption of isothermality, which may work well in chemo-dynamical studies, becomes a critical factor in molecular line formation simulations. We argue that even small temperature variations, which are likely to exist in starless cores, can have a non-negligible effect on the interpretation of molecular line data and derived core properties. In particular, ``chemically pristine isothermal cores (low depletion) can have centrally peaked C$^{18}$O and C$^{34}$S radial intensity profiles, while having ring-like intensity distributions in models with a colder center and/or warmer envelope assuming the same underlying chemical structure. Therefore, derived molecular abundances based on oversimplified thermal models may lead to a mis-interpretation of the line data.
150 - Ya. Pavlyuchenkov 2007
We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested Accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiati ve transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the Full Escape Probability (FEP) approximation can safely be used for the upper transitions ($J_{rm up} ga 3$) but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, VEP (Vertical Escape Probability) and VOR (Vertical One Ray) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10--50 are described.
The process of turbulent radial mixing in protoplanetary disks has strong relevance to the analysis of the spatial distribution of crystalline dust species in disks around young stars and to studies of the composition of meteorites and comets in our own solar system. A debate has gone on in the recent literature on the ratio of the effective viscosity coefficient $ u$ (responsible for accretion) to the turbulent diffusion coefficient $D$ (responsible for mixing). Numerical magneto-hydrodynamic simulations have yielded values between $ u/Dsimeq 10$ (Carballido, Stone & Pringle, 2005) and $ u/Dsimeq 0.85$ (Johansen & Klahr, 2005}). Here we present two analytic arguments for the ratio $ u/D=1/3$ which are based on elegant, though strongly simplified assumptions. We argue that whichever of these numbers comes closest to reality may be determined {em observationally} by using spatially resolved mid-infrared measurements of protoplanetary disks around Herbig stars. If meridional flows are present in the disk, then we expect less abundance of crystalline dust in the surface layers, a prediction which can likewise be observationally tested with mid-infrared interferometers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا