ترغب بنشر مسار تعليمي؟ اضغط هنا

We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented structure in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of a signal from its wave let coefficients. We present exact and efficient algorithms to compute the scale-discretized wavelet transform of band-limited signals on the sphere. These algorithms are implemented in the publicly available S2DW code. We release a new version of S2DW that is parallelized and contains additional code optimizations. Note that scale-discretized wavelets can be viewed as a directional generalization of needlets. Finally, we outline future improvements to the algorithms presented, which can be achieved by exploiting a new sampling theorem on the sphere developed recently by some of the authors.
114 - J. D. McEwen , Y. Wiaux 2011
We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational complexity or computation time. We make our implementation of these algorithms available publicly and perform numerical experiments demonstrating their speed and accuracy up to very high band-limits. Finally, we highlight the advantages of our sampling theorem in the context of potential applications, notably in the field of compressive sampling.
We propose an algorithm for the reconstruction of the signal induced by cosmic strings in the cosmic microwave background (CMB), from radio-interferometric data at arcminute resolution. Radio interferometry provides incomplete and noisy Fourier measu rements of the string signal, which exhibits sparse or compressible magnitude of the gradient due to the Kaiser-Stebbins (KS) effect. In this context the versatile framework of compressed sensing naturally applies for solving the corresponding inverse problem. Our algorithm notably takes advantage of a model of the prior statistical distribution of the signal fitted on the basis of realistic simulations. Enhanced performance relative to the standard CLEAN algorithm is demonstrated by simulated observations under noise conditions including primary and secondary CMB anisotropies.
84 - Y. Wiaux , G. Puy , Y. Boursier 2009
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a noisy and incomplete Fourier coverage of the product of the planar signals with a linear chirp modulation. In light of the recent theory of compressed sensing and in the perspective of defining the best possible imaging techniques for sparse signals, we analyze the related spread spectrum phenomenon and suggest its universality relative to the sparsity dictionary. Our results rely both on theoretical considerations related to the mutual coherence between the sparsity and sensing dictionaries, as well as on numerical simulations.
An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic microwave background (CMB). A Bayesian approach is taken, based on modeling the string signal in the wavelet domain with generalized Gaussian distributions. Goo d performance of the algorithm is demonstrated by simulated experiments at arcminute resolution under noise conditions including primary and secondary CMB anisotropies, as well as instrumental noise.
A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of the wavelet formalism developed by Antoine & Vandergheynst (1999) and Wiaux et al. (20 05). The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation is firstly identified. A scale discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background (CMB) data, such as the imprint of topological defects, in particular cosmic strings, and for their reconstruction after separation from the other signal components.
Using local morphological measures on the sphere defined through a steerable wavelet analysis, we examine the three-year WMAP and the NVSS data for correlation induced by the integrated Sachs-Wolfe (ISW) effect. The steerable wavelet constructed from the second derivative of a Gaussian allows one to define three local morphological measures, namely the signed-intensity, orientation and elongation of local features. Detections of correlation between the WMAP and NVSS data are made with each of these morphological measures. The most significant detection is obtained in the correlation of the signed-intensity of local features at a significance of 99.9%. By inspecting signed-intensity sky maps, it is possible for the first time to see the correlation between the WMAP and NVSS data by eye. Foreground contamination and instrumental systematics in the WMAP data are ruled out as the source of all significant detections of correlation. Our results provide new insight on the ISW effect by probing the morphological nature of the correlation induced between the cosmic microwave background and large scale structure of the Universe. Given the current constraints on the flatness of the Universe, our detection of the ISW effect again provides direct and independent evidence for dark energy. Moreover, this new morphological analysis may be used in future to help us to better understand the nature of dark energy.
The decomposition of a signal on the sphere with the steerable wavelet constructed from the second Gaussian derivative gives access to the orientation, signed-intensity, and elongation of the signals local features. In the present work, the non-Gauss ianity of the WMAP temperature data of the cosmic microwave background (CMB) is analyzed in terms of the first four moments of the statistically isotropic random fields associated with these local morphological measures, at wavelet scales corresponding to angular sizes between 27.5 arcminutes and 30 degrees on the celestial sphere. While no detection is made neither in the orientation analysis nor in the elongation analysis, a strong detection is made in the excess kurtosis of the signed-intensity of the WMAP data. The non-Gaussianity is observed with a significance level below 0.5% at a wavelet scale corresponding to an angular size around 10 degrees, and confirmed at neighbour scales. This supports a previous detection of an excess of kurtosis in the wavelet coefficient of the WMAP data with the axisymmetric Mexican hat wavelet (Vielva et al. 2004). Instrumental noise and foreground emissions are not likely to be at the origin of the excess of kurtosis. Large-scale modulations of the CMB related to some unknown systematics are rejected as possible origins of the detection. The observed non-Gaussianity may therefore probably be imputed to the CMB itself, thereby questioning the basic inflationary scenario upon which the present concordance cosmological model relies. Taking the CMB temperature angular power spectrum of the concordance cosmological model at face value, further analysis also suggests that this non-Gaussianity is not confined to the directions on the celestial sphere with an anomalous signed-intensity.
Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year WMAP data, through a decomposition of the signal with steerable wavelets on the sphere. Firstly, an alignme nt analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions toward which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results (Wiaux et al. 2006). Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot (Vielva et al. 2004), a second cold spot lying very close to the southern end of the CMB dipole axis, and a hot spot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10 degress on the celestial sphere, with global significance levels around 1%. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions, as well as some form of other systematics, are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.
The cosmic microwave background (CMB) is a relic radiation of the Big Bang and as such it contains a wealth of cosmological information. Statistical analyses of the CMB, in conjunction with other cosmological observables, represent some of the most p owerful techniques available to cosmologists for placing strong constraints on the cosmological parameters that describe the origin, content and evolution of the Universe. The last decade has witnessed the introduction of wavelet analyses in cosmology and, in particular, their application to the CMB. We review here spherical wavelet analyses of the CMB that test the standard cosmological concordance model. The assumption that the temperature anisotropies of the CMB are a realisation of a statistically isotropic Gaussian random field on the sphere is questioned. Deviations from both statistical isotropy and Gaussianity are detected in the reviewed works, suggesting more exotic cosmological models may be required to explain our Universe. We also review spherical wavelet analyses that independently provide evidence for dark energy, an exotic component of our Universe of which we know very little currently. The effectiveness of accounting correctly for the geometry of the sphere in the wavelet analysis of full-sky CMB data is demonstrated by the highly significant detections of physical processes and effects that are made in these reviewed works.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا