ﻻ يوجد ملخص باللغة العربية
We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational complexity or computation time. We make our implementation of these algorithms available publicly and perform numerical experiments demonstrating their speed and accuracy up to very high band-limits. Finally, we highlight the advantages of our sampling theorem in the context of potential applications, notably in the field of compressive sampling.
We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by connecting the rotation group to the three-torus through a periodic extension. Our sampling theorem requires $4L^3$ samples to capture all of t
A sampling theorem on the sphere has been developed recently, requiring half as many samples as alternative equiangular sampling theorems on the sphere. A reduction by a factor of two in the number of samples required to represent a band-limited sign
We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fide
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number o
We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is