ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Y. Sato , Z. Xiang , Y. Kasahara 2021
Kondo insulators have recently aroused great interest because they are promising materials that host a topological insulator state caused by the strong electron interactions. Moreover, recent observations of the quantum oscillations in the insulating state of Kondo insulators have come as a great surprise. Here, to investigate the surface electronic state of a prototype Kondo insulator YbB$_{12}$, we measured transport properties of single crystals and microstructures. In all samples, the temperature dependence of the electrical resistivity is insulating at high temperatures and the resistivity exhibits a plateau at low temperatures. The magnitude of the plateau value decreases with reducing sample thickness, which is quantitatively consistent with the surface electronic conduction in the bulk insulating YbB$_{12}$. Moreover, the magnetoresistance of the microstructures exhibits a weak-antilocalization effect at low field. These results are consistent with the presence of topologically protected surface state, suggesting that YbB$_{12}$ is a candidate material of the topological Kondo insulator. The high field resistivity measurements up to $mu_0H$ = 50 T of the microstructures provide supporting evidence that the quantum oscillations of the resistivity in YbB$_{12}$ occurs in the insulating bulk.
Materials where localized magnetic moments are coupled to itinerant electrons, the so-called Kondo lattice materials, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, including unconventi onal superconductivity, strange metals, and correlated topological phases of matter. Here, we report what appears to be electron fractionalization in insulating Kondo lattice material YbIr$_3$Si$_7$, with emergent neutral excitations that carry heat but not electric current and contribute to metal-like specific heat. We show that these neutral particles change their properties as the material undergoes a transformation between two antiferromagnetic phases in an applied magnetic field. In the low-field AF-I phase, we find that the low temperature linear specific heat coefficient $gamma$ and the residual linear term in the thermal conductivity $kappa/T(Trightarrow 0)$ are finite, demonstrating itinerant gapless excitations. These results, along with a spectacular violation of the Wiedemann-Franz law, directly indicate that YbIr$_3$Si$_7$ is a charge insulator but a thermal metal. Nuclear magnetic resonance spectrum reveals a spin-flop transition to a high field AF-II phase. Near the transition field, $gamma$ is significantly enhanced. Most surprisingly, inside the AF-II phase, $kappa/T$ exhibits a sharp drop below $sim300$ mK, indicating either opening of a tiny gap or a linearly vanishing density of states. This finding demonstrates a transition from a thermal metal into an insulator/semimetal driven by the spin-flop magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures.
104 - Y. Sato , Y. Fukaya , M. Cameau 2020
Electronic structure of the 3x3 ordered-phase of a silicon (Si) layer on Al(111) has been studied by angle resolved photoemission spectroscopy (ARPES) technique using synchrotron radiation and modeled by a trial atomic model. A closed Fermi surface o riginating from linearly dispersing band is identified. A band structure calculation of a trial atomic model of the honeycomb silicene on Al(111) implies that the metallic band originates from the Al-Si hybrid state that has the Dirac cone-like dispersion curves. The Si layer on Al(111) can be a model system of Xene to realize the massless electronic system through the overlayer-substrate interaction.
EtMe$_3$Sb[Pd(dmit)$_2$]$_2$, an organic Mott insulator with nearly isotropic triangular lattice, is a candidate material for a quantum spin liquid, in which the zero-point fluctuations do not allow the spins to order. The itinerant gapless excitatio ns inferred from the thermal transport measurements in this system have been a hotly debated issue recently. While the presence of a finite linear residual thermal conductivity, $kappa_0/T equiv kappa/T (T rightarrow 0)$, has been shown [M. Yamashita {it et al.} Science {bf 328}, 1246 (2010)], recent experiments [P. Bourgeois-Hope {it et al.}, Phys. Rev. X {bf 9}, 041051 (2019); J. M. Ni {it et al.}, Phys. Rev. Lett. {bf 123}, 247204 (2019)] have reported the absence of $kappa_0/T$. Here we show that the low-temperature thermal conductivity strongly depends on the cooling process of the sample. When cooling down very slowly, a sizable $kappa_0/T$ is observed. In contrast, when cooling down rapidly, $kappa_0/T$ vanishes and, in addition, the phonon thermal conductivity is strongly suppressed. These results suggest that possible random scatterers introduced during the cooling process are responsible for the apparent discrepancy of the thermal conductivity data in this organic system. The present results provide evidence that the true ground state of EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ is likely to be a quantum spin liquid with itinerant gapless excitations.
We present resistivity and thermal-conductivity measurements of superconducting FeSe in intense magnetic fields up to 35 T applied parallel to the $ab$ plane. At low temperatures, the upper critical field $mu_0 H_{c2}^{ab}$ shows an anomalous upturn, while thermal conductivity exhibits a discontinuous jump at $mu_0 H^{ast}approx 24$ T well below $mu_0 H_{c2}^{ab}$, indicating a first-order phase transition in the superconducting state. This demonstrates the emergence of a distinct field-induced superconducting phase. Moreover, the broad resistive transition at high temperatures abruptly becomes sharp upon entering the high-field phase, indicating a dramatic change of the magnetic-flux properties. We attribute the high-field phase to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, where the formation of planar nodes gives rise to a segmentation of the flux-line lattice. We point out that strongly orbital-dependent pairing as well as spin-orbit interactions, the multiband nature, and the extremely small Fermi energy are important for the formation of the FFLO state in FeSe.
A quantum spin liquid (QSL) is an exotic state of matter characterized by quantum entanglement and the absence of any broken symmetry. A long-standing open problem, which is a key for fundamental understanding the mysterious QSL states, is how the qu antum fluctuations respond to randomness due to quenched disorder. Transition metal dichalcogenide 1T-TaS$_2$ is a candidate material that hosts a QSL ground state with spin-1/2 on the two-dimensional perfect triangular lattice. Here, we performed systematic studies of low-temperature heat capacity and thermal conductivity on pure, Se-substituted and electron irradiated crystals of 1T-TaS$_2$. In pure 1T-TaS$_2$, the linear temperature term of the heat capacity $gamma T$ and the finite residual linear term of the thermal conductivity in the zero-temperature limit $kappa_{0}/Tequivkappa/T(Trightarrow0)$ are clearly resolved, consistent with the presence of gapless spinons with a Fermi surface. Moreover, while the strong magnetic field slightly enhances $kappa_0/T$, it strongly suppresses $gamma$. These unusual contrasting responses to magnetic field imply the coexistence of two types of gapless excitations with itinerant and localized characters. Introduction of additional weak random exchange disorder in 1T-Ta(S$_{1-x}$Se$_x$)$_2$ leads to vanishing of $kappa_0/T$, indicating that the itinerant gapless excitations are sensitive to the disorder. On the other hand, in both pure and Se-substituted systems, the magnetic contribution of the heat capacity obeys a universal scaling relation, which is consistent with a theory that assumes the presence of localized orphan spins forming random singlets. Electron irradiation in pure 1T-TaS$_2$ largely enhances $gamma$ and changes the scaling function dramatically, suggesting a possible new state of spin liquid.
68 - Y. Sato , Z. Xiang , Y. Kasahara 2019
Quantum oscillations (QOs) in transport and thermodynamic parameters at high magnetic fields are an unambiguous signature of the Fermi surface, the defining characteristic of a metal. Therefore, recent observations of QOs in insulating SmB$_6$ and Yb B$_{12}$, in particular the QOs of the resistivity $rho_{xx}$ in YbB$_{12}$, have been a big surprise, pointing to the formation of a novel state of quantum matter. Despite the large charge gap inferred from the insulating behaviour of $rho_{xx}$, these compounds seemingly host a Fermi surface at high magnetic fields. However, the nature of the ground state in zero field has been little explored. Here we report the use of low-temperature heat-transport measurements to discover gapless, itinerant, charge-neutral excitations in the ground state of YbB$_{12}$. At zero field, despite $rho_{xx}$ being far larger than that of conventional metals, a sizable linear temperature dependent term in the thermal conductivity is clearly resolved in the zero-temperature limit ($kappa_{xx}/T(Trightarrow0)=kappa_{xx}^0/T eq0$). Such a residual $kappa_{xx}^0/T$ term at zero field, which is absent in SmB$_6$, leads to a spectacular violation of the Wiedemann-Franz law: the Lorenz ratio $L=kappa_{xx}rho_{xx}/T$ is $10^{4}$-$10^{5}$ times larger than that expected in conventional metals. These data indicate that YbB$_{12}$ is a charge insulator but a thermal metal, suggesting the presence of itinerant neutral fermions. Remarkably, more insulating crystals with larger activation energies exhibit a larger amplitude of the resistive QOs as well as a larger $kappa_{xx}^0/T$, in stark contrast to conventional metals. Moreover, we find that these fermions couple to magnetic field, despite their charge neutrality. Our findings expose novel gapless and highly itinerant, charge-neutral quasiparticles in this unconventional quantum state.
The pseudogap phenomenon in cuprates is the most mysterious puzzle in the research of high-temperature superconductivity. In particular, whether the pseudogap is associated with a crossover or phase transition has been a long-standing controversial i ssue. The tetragonal cuprate HgBa$_2$CuO$_{4+delta}$, with only one CuO$_2$ layer per primitive cell, is an ideal system to tackle this puzzle. Here, we measure the anisotropy of magnetic susceptibility within the CuO$_2$ plane with exceptionally high-precision magnetic torque experiments. Our key finding is that a distinct two-fold in-plane anisotropy sets in below the pseudogap temperature $T^*$, which provides thermodynamic evidence for a nematic phase transition with broken four-fold symmetry. Most surprisingly, the nematic director orients along the diagonal direction of the CuO$_2$ square lattice, in sharp contrast to the bond nematicity reported in various iron-based superconductors and double-layer YBa$_2$Cu$_3$O$_{6+delta}$, where the anisotropy axis is along the Fe-Fe and Cu-O-Cu directions, respectively. Another remarkable feature is that the enhancement of the diagonal nematicity with decreasing temperature is suppressed around the temperature at which short-range charge-density-wave (CDW) formation occurs. This is in stark contrast to YBa$_2$Cu$_3$O$_{6+delta}$, where the bond nematicity is not influenced by the CDW. Our result suggests a competing relationship between diagonal nematic and CDW order in HgBa$_2$CuO$_{4+delta}$.
397 - H. Murayama , Y. Sato , X. Z. Xing 2018
To reveal the nature of elementary excitations in a quantum spin liquid (QSL), we measured low temperature thermal conductivity and specific heat of 1T-TaS$_2$, a QSL candidate material with frustrated triangular lattice of spin-1/2. The nonzero temp erature linear specific heat coefficient $gamma$ and the finite residual linear term of the thermal conductivity in the zero temperature limit $kappa_0/T=kappa/T(Trightarrow 0)$ are clearly resolved. This demonstrates the presence of highly mobile gapless excitations, which is consistent with fractionalized spinon excitations that form a Fermi surface. Remarkably, an external magnetic field strongly suppresses $gamma$, whereas it enhances $kappa_0/T$. This unusual contrasting behavior in the field dependence of specific heat and thermal conductivity can be accounted for by the presence of two types of gapless excitations with itinerant and localized characters, as recently predicted theoretically (I. Kimchi et al., arXiv:1803.00013 (2018)). This unique feature of 1T-TaS$_2$ provides new insights into the influence of quenched disorder on the QSL.
54 - Y. Sato , T.S. Doan , N.T. The 2018
In this paper, we show that under a generic condition of the coefficient of a stochastic phase oscillator the Lyapunov exponent of the linearization along an arbitrary solution is always negative. Consequently, the generated random dynamical system exhibits a synchronization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا