ﻻ يوجد ملخص باللغة العربية
EtMe$_3$Sb[Pd(dmit)$_2$]$_2$, an organic Mott insulator with nearly isotropic triangular lattice, is a candidate material for a quantum spin liquid, in which the zero-point fluctuations do not allow the spins to order. The itinerant gapless excitations inferred from the thermal transport measurements in this system have been a hotly debated issue recently. While the presence of a finite linear residual thermal conductivity, $kappa_0/T equiv kappa/T (T rightarrow 0)$, has been shown [M. Yamashita {it et al.} Science {bf 328}, 1246 (2010)], recent experiments [P. Bourgeois-Hope {it et al.}, Phys. Rev. X {bf 9}, 041051 (2019); J. M. Ni {it et al.}, Phys. Rev. Lett. {bf 123}, 247204 (2019)] have reported the absence of $kappa_0/T$. Here we show that the low-temperature thermal conductivity strongly depends on the cooling process of the sample. When cooling down very slowly, a sizable $kappa_0/T$ is observed. In contrast, when cooling down rapidly, $kappa_0/T$ vanishes and, in addition, the phonon thermal conductivity is strongly suppressed. These results suggest that possible random scatterers introduced during the cooling process are responsible for the apparent discrepancy of the thermal conductivity data in this organic system. The present results provide evidence that the true ground state of EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ is likely to be a quantum spin liquid with itinerant gapless excitations.
In molecular-based quantum-spin-liquid candidate EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ with two-dimensional $S$=1/2 triangular lattice, a finite residual linear term in the thermal conductivity, $kappa_0/Tequivkappa/T (T rightarrow 0)$, has been observed and
To reveal the nature of elementary excitations in a quantum spin liquid (QSL), we measured low temperature thermal conductivity and specific heat of 1T-TaS$_2$, a QSL candidate material with frustrated triangular lattice of spin-1/2. The nonzero temp
We present the ultralow-temperature specific heat and thermal conductivity measurements on single crystals of triangular-lattice organic compound EtMe$_3$Sb[Pd(dmit)$_2$]$_2$, which has long been considered as a gapless quantum spin liquid candidate.
The absence of both spin freezing and of a static Jahn-Teller effect have lead to the proposition that Ba$_3$CuSb$_2$O$_9$ is a quantum spin-orbital liquid. However, theoretical understanding of the microscopic origin of this behavior has been hamper
We have in detail characterized the anisotropic charge response of the dimer Mott insulator $kappa$-(BEDT-TTF)$_2$-Cu$_2$(CN)$_3$ by dc conductivity, Hall effect and dielectric spectroscopy. At room temperature the Hall coefficient is positive and cl