ترغب بنشر مسار تعليمي؟ اضغط هنا

Most previous studies of epidemic dynamics on complex networks suppose that the disease will eventually stabilize at either a disease-free state or an endemic one. In reality, however, some epidemics always exhibit sporadic and recurrent behaviour in one region because of the invasion from an endemic population elsewhere. In this paper we address this issue and study a susceptible-infected-susceptible epidemiological model on a network consisting of two communities, where the disease is endemic in one community but alternates between outbreaks and extinctions in the other. We provide a detailed characterization of the temporal dynamics of epidemic patterns in the latter community. In particular, we investigate the time duration of both outbreak and extinction, and the time interval between two consecutive inter-community infections, as well as their frequency distributions. Based on the mean-field theory, we theoretically analyze these three timescales and their dependence on the average node degree of each community, the transmission parameters, and the number of intercommunity links, which are in good agreement with simulations, except when the probability of overlaps between successive outbreaks is too large. These findings aid us in better understanding the bursty nature of disease spreading in a local community, and thereby suggesting effective time-dependent control strategies.
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-w orld, Barabasi-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, $C(k) sim k^{-1}$ and $C sim n^{-1}$, where $k$ and $n$ refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and aging of networks where intrinsic features of individual nodes drive their popularity, and hence degree.
We propose a new mechanism leading to scale-free networks which is based on the presence of an intrinsic character of a vertex called fitness. In our model, a vertex $i$ is assigned a fitness $x_i$, drawn from a given probability distribution functio n $f(x)$. During network evolution, with rate $p$ we add a vertex $j$ of fitness $x_j$ and connect to an existing vertex $i$ of fitness $x_i$ selected preferentially to a linking probability function $g(x_i,x_j)$ which depends on the fitnesses of the two vertices involved and, with rate $1-p$ we create an edge between two already existed vertices with fitnesses $x_i$ and $x_j$, with a probability also preferential to the connection function $g(x_i,x_j)$. For the proper choice of $g$, the resulting networks have generalized power laws, irrespective of the fitness distribution of vertices.
We investigated the influence of efficacy of synaptic interaction on firing synchronization in excitatory neuronal networks. We found spike death phenomena, namely, the state of neurons transits from limit cycle to fixed point or transient state. The phenomena occur under the perturbation of excitatory synaptic interaction that has a high efficacy. We showed that the decrease of synaptic current results in spike death through depressing the feedback of sodium ionic current. In the networks with spike death property the degree of synchronization is lower and unsensitive to the heterogeneity of neurons. The mechanism of the influence is that the transition of neuron state disrupts the adjustment of the rhythm of neuron oscillation and prevents further increase of firing synchronization.
We study a simple reaction-diffusion population model [proposed by A. Windus and H. J. Jensen, J. Phys. A: Math. Theor. 40, 2287 (2007)] on scale-free networks. In the case of fully random diffusion, the network topology cannot affect the critical de ath rate, whereas the heterogeneous connectivity can cause smaller steady population density and critical population density. In the case of modified diffusion, we obtain a larger critical death rate and steady population density, at the meanwhile, lower critical population density, which is good for the survival of species. The results were obtained using a mean-field-like framework and were confirmed by computer simulations.
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be a chieved only on two coupled chaotic systems. In this paper, we can realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed by a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial-linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks and find both the existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.
The emergence and maintenance of cooperation within sizable groups of unrelated humans offer many challenges for our understanding. We propose that the humans capacity of communication, such as how many and how far away the fellows can build up mutua l communications, may affect the evolution of cooperation. We study this issue by means of the public goods game (PGG) with a two-layered network of contacts. Players obtain payoffs from five-person public goods interactions on a square lattice (the interaction layer). Also, they update strategies after communicating with neighbours in learning layer, where two players build up mutual communication with a power law probability depending on their spatial distance. Our simulation results indicate that the evolution of cooperation is indeed sensitive to how players choose others to communicate with, including the amount as well as the locations. The tendency of localised communication is proved to be a new mechanism to promote cooperation.
We investigate the standard susceptible-infected-susceptible model on a random network to study the effects of preference and geography on diseases spreading. The network grows by introducing one random node with $m$ links on a Euclidean space at uni t time. The probability of a new node $i$ linking to a node $j$ with degree $k_j$ at distance $d_{ij}$ from node $i$ is proportional to $k_{j}^{A}/d_{ij}^{B}$, where $A$ and $B$ are positive constants governing preferential attachment and the cost of the node-node distance. In the case of A=0, we recover the usual epidemic behavior with a critical threshold below which diseases eventually die out. Whereas for B=0, the critical behavior is absent only in the condition A=1. While both ingredients are proposed simultaneously, the network becomes robust to infection for larger $A$ and smaller $B$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا