ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - Runsheng Xu , Hao Xiang , Xin Xia 2021
Employing Vehicle-to-Vehicle communication to enhance perception performance in self-driving technology has attracted considerable attention recently; however, the absence of a suitable open dataset for benchmarking algorithms has made it difficult t o develop and assess cooperative perception technologies. To this end, we present the first large-scale open simulated dataset for Vehicle-to-Vehicle perception. It contains over 70 interesting scenes, 111,464 frames, and 232,913 annotated 3D vehicle bounding boxes, collected from 8 towns in CARLA and a digital town of Culver City, Los Angeles. We then construct a comprehensive benchmark with a total of 16 implemented models to evaluate several information fusion strategies~(i.e. early, late, and intermediate fusion) with state-of-the-art LiDAR detection algorithms. Moreover, we propose a new Attentive Intermediate Fusion pipeline to aggregate information from multiple connected vehicles. Our experiments show that the proposed pipeline can be easily integrated with existing 3D LiDAR detectors and achieve outstanding performance even with large compression rates. To encourage more researchers to investigate Vehicle-to-Vehicle perception, we will release the dataset, benchmark methods, and all related codes in https://mobility-lab.seas.ucla.edu/opv2v/.
Session-based recommendation targets next-item prediction by exploiting user behaviors within a short time period. Compared with other recommendation paradigms, session-based recommendation suffers more from the problem of data sparsity due to the ve ry limited short-term interactions. Self-supervised learning, which can discover ground-truth samples from the raw data, holds vast potentials to tackle this problem. However, existing self-supervised recommendation models mainly rely on item/segment dropout to augment data, which are not fit for session-based recommendation because the dropout leads to sparser data, creating unserviceable self-supervision signals. In this paper, for informative session-based data augmentation, we combine self-supervised learning with co-training, and then develop a framework to enhance session-based recommendation. Technically, we first exploit the session-based graph to augment two views that exhibit the internal and external connectivities of sessions, and then we build two distinct graph encoders over the two views, which recursively leverage the different connectivity information to generate ground-truth samples to supervise each other by contrastive learning. In contrast to the dropout strategy, the proposed self-supervised graph co-training preserves the complete session information and fulfills genuine data augmentation. Extensive experiments on multiple benchmark datasets show that, session-based recommendation can be remarkably enhanced under the regime of self-supervised graph co-training, achieving the state-of-the-art performance.
148 - Zhipeng Gao , Xin Xia , David Lo 2021
TODO comments are very widely used by software developers to describe their pending tasks during software development. However, after performing the task developers sometimes neglect or simply forget to remove the TODO comment, resulting in obsolete TODO comments. These obsolete TODO comments can confuse development teams and may cause the introduction of bugs in the future, decreasing the softwares quality and maintainability. In this work, we propose a novel model, named TDCleaner (TODO comment Cleaner), to identify obsolete TODO comments in software projects. TDCleaner can assist developers in just-in-time checking of TODO comments status and avoid leaving obsolete TODO comments. Our approach has two main stages: offline learning and online prediction. During offline learning, we first automatically establish <code_change, todo_comment, commit_msg> training samples and leverage three neural encoders to capture the semantic features of TODO comment, code change and commit message respectively. TDCleaner then automatically learns the correlations and interactions between different encoders to estimate the final status of the TODO comment. For online prediction, we check a TODO comments status by leveraging the offline trained model to judge the TODO comments likelihood of being obsolete. We built our dataset by collecting TODO comments from the top-10,000 Python and Java Github repositories and evaluated TDCleaner on them. Extensive experimental results show the promising performance of our model over a set of benchmarks. We also performed an in-the-wild evaluation with real-world software projects, we reported 18 obsolete TODO comments identified by TDCleaner to Github developers and 9 of them have already been confirmed and removed by the developers, demonstrating the practical usage of our approach.
In this work, we study estimation problems in nonlinear mechanical systems subject to non-stationary and unknown excitation, which are common and critical problems in design and health management of mechanical systems. A primary-auxiliary model sch eduling procedure based on time-domain transmissibilities is proposed and performed under switching linear dynamics: In addition to constructing a primary transmissibility family from the pseudo-inputs to the output during the offline stage, an auxiliary transmissibility family is constructed by further decomposing the pseudo-input vector into two parts. The auxiliary family enables to determine the unknown working condition at which the system is currently running at, and then an appropriate transmissibility from the primary transmissibility family for estimating the unknown output can be selected during the online estimation stage. As a result, the proposed approach offers a generalizable and explainable solution to the signal estimation problems in nonlinear mechanical systems in the context of switching linear dynamics with unknown inputs. A real-world application to the estimation of the vertical wheel force in a full vehicle system are, respectively, conducted to demonstrate the effectiveness of the proposed method. During the vehicle design phase, the vertical wheel force is the most important one among Wheel Center Loads (WCLs), and it is often measured directly with expensive, intrusive, and hard-to-install measurement devices during full vehicle testing campaigns. Meanwhile, the estimation problem of the vertical wheel force has not been solved well and is still of great interest. The experimental results show good performances of the proposed method in the sense of estimation accuracy for estimating the vertical wheel force.
Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we design optimal probe states for detector estimation based on the minimum upper bound of the mean square d error (UMSE) and the maximum robustness. We establish the minimum UMSE and the minimum condition number for quantum detectors and provide concrete examples that can achieve optimal detector tomography. In order to enhance estimation precision, we also propose a two-step adaptive detector tomography algorithm and investigate how this adaptive strategy can be used to achieve efficient estimation of quantum detectors. Moreover, the superposition of coherent states are used as probe states for quantum detector tomography and the estimation error is analyzed. Numerical results demonstrate the effectiveness of both the proposed optimal and adaptive quantum detector tomography methods.
With the surge in the number of hyperparameters and training times of modern machine learning models, hyperparameter tuning is becoming increasingly expensive. Although methods have been proposed to speed up tuning via knowledge transfer, they typica lly require the final performance of hyperparameters and do not focus on low-fidelity information. Nevertheless, this common practice is suboptimal and can incur an unnecessary use of resources. It is more cost-efficient to instead leverage the low-fidelity tuning observations to measure inter-task similarity and transfer knowledge from existing to new tasks accordingly. However, performing multi-fidelity tuning comes with its own challenges in the transfer setting: the noise in the additional observations and the need for performance forecasting. Therefore, we conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2). We further present an offline-computed 27-task hyperparameter recommendation (HyperRec) database to serve the community. Extensive experiments on HyperRec and other real-world databases illustrate the effectiveness of our AT2 method.
To ensure the privacy of sensitive data used in the training of deep learning models, a number of privacy-preserving methods have been designed by the research community. However, existing schemes are generally designed to work with textual data, or are not efficient when a large number of images is used for training. Hence, in this paper we propose a lightweight and efficient approach to preserve image privacy while maintaining the availability of the training set. Specifically, we design the pixel block mixing algorithm for image classification privacy preservation in deep learning. To evaluate its utility, we use the mixed training set to train the ResNet50, VGG16, InceptionV3 and DenseNet121 models on the WIKI dataset and the CNBC face dataset. Experimental findings on the testing set show that our scheme preserves image privacy while maintaining the availability of the training set in the deep learning models. Additionally, the experimental results demonstrate that we achieve good performance for the VGG16 model on the WIKI dataset and both ResNet50 and DenseNet121 on the CNBC dataset. The pixel block algorithm achieves fairly high efficiency in the mixing of the images, and it is computationally challenging for the attackers to restore the mixed training set to the original training set. Moreover, data augmentation can be applied to the mixed training set to improve the trainings effectiveness.
On Stack Overflow, users reuse 11,926,354 external links to share the resources hosted outside the Stack Overflow website. The external links connect to the existing programming-related knowledge and extend the crowdsourced knowledge on Stack Overflo w. Some of the external links, so-called as repeated external links, can be shared for multiple times. We observe that 82.5% of the link sharing activities (i.e., sharing links in any question, answer, or comment) on Stack Overflow share external resources, and 57.0% of the occurrences of the external links are sharing the repeated external links. However, it is still unclear what types of external resources are repeatedly shared. To help users manage their knowledge, we wish to investigate the characteristics of the repeated external links in knowledge sharing on Stack Overflow. In this paper, we analyze the repeated external links on Stack Overflow. We observe that external links that point to the text resources (hosted in documentation websites, tutorial websites, etc.) are repeatedly shared the most. We observe that: 1) different users repeatedly share the same knowledge in the form of repeated external links, thus increasing the maintenance effort of knowledge (e.g., update invalid links in multiple posts), 2) the same users can repeatedly share the external links for the purpose of promotion, and 3) external links can point to webpages with an overload of information that is difficult for users to retrieve relevant information. Our findings provide insights to Stack Overflow moderators and researchers. For example, we encourage Stack Overflow to centrally manage the commonly occurring knowledge in the form of repeated external links in order to better maintain the crowdsourced knowledge on Stack Overflow.
In this paper, we propose an approach named psc2code to denoise the process of extracting source code from programming screencasts. First, psc2code leverages the Convolutional Neural Network based image classification to remove non-code and noisy-cod e frames. Then, psc2code performs edge detection and clustering-based image segmentation to detect sub-windows in a code frame, and based on the detected sub-windows, it identifies and crops the screen region that is most likely to be a code editor. Finally, psc2code calls the API of a professional OCR tool to extract source code from the cropped code regions and leverages the OCRed cross-frame information in the programming screencast and the statistical language model of a large corpus of source code to correct errors in the OCRed source code. We conduct an experiment on 1,142 programming screencasts from YouTube. We find that our CNN-based image classification technique can effectively remove the non-code and noisy-code frames, which achieves an F1-score of 0.95 on the valid code frames. Based on the source code denoised by psc2code, we implement two applications: 1) a programming screencast search engine; 2) an interaction-enhanced programming screencast watching tool. Based on the source code extracted from the 1,142 collected programming screencasts, our experiments show that our programming screencast search engine achieves the precision@5, 10, and 20 of 0.93, 0.81, and 0.63, respectively.
92 - Tingting Bi , Xin Xia , David Lo 2021
Being able to access software in daily life is vital for everyone, and thus accessibility is a fundamental challenge for software development. However, given the number of accessibility issues reported by many users, e.g., in app reviews, it is not c lear if accessibility is widely integrated into current software projects and how software projects address accessibility issues. In this paper, we report a study of the critical challenges and benefits of incorporating accessibility into software development and design. We applied a mixed qualitative and quantitative approach for gathering data from 15 interviews and 365 survey respondents from 26 countries across five continents to understand how practitioners perceive accessibility development and design in practice. We got 44 statements grouped into eight topics on accessibility from practitioners viewpoints and different software development stages. Our statistical analysis reveals substantial gaps between groups, e.g., practitioners have Direct v.s. Indirect accessibility relevant work experience when they reviewed the summarized statements. These gaps might hinder the quality of accessibility development and design, and we use our findings to establish a set of guidelines to help practitioners be aware of accessibility challenges and benefit factors. We also propose some remedies to resolve the gaps and to highlight key future research directions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا