ترغب بنشر مسار تعليمي؟ اضغط هنا

psc2code: Denoising Code Extraction from Programming Screencasts

279   0   0.0 ( 0 )
 نشر من قبل Lingfeng Bao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an approach named psc2code to denoise the process of extracting source code from programming screencasts. First, psc2code leverages the Convolutional Neural Network based image classification to remove non-code and noisy-code frames. Then, psc2code performs edge detection and clustering-based image segmentation to detect sub-windows in a code frame, and based on the detected sub-windows, it identifies and crops the screen region that is most likely to be a code editor. Finally, psc2code calls the API of a professional OCR tool to extract source code from the cropped code regions and leverages the OCRed cross-frame information in the programming screencast and the statistical language model of a large corpus of source code to correct errors in the OCRed source code. We conduct an experiment on 1,142 programming screencasts from YouTube. We find that our CNN-based image classification technique can effectively remove the non-code and noisy-code frames, which achieves an F1-score of 0.95 on the valid code frames. Based on the source code denoised by psc2code, we implement two applications: 1) a programming screencast search engine; 2) an interaction-enhanced programming screencast watching tool. Based on the source code extracted from the 1,142 collected programming screencasts, our experiments show that our programming screencast search engine achieves the precision@5, 10, and 20 of 0.93, 0.81, and 0.63, respectively.



قيم البحث

اقرأ أيضاً

Statistical analysis is the tool of choice to turn data into information, and then information into empirical knowledge. To be valid, the process that goes from data to knowledge should be supported by detailed, rigorous guidelines, which help ferret out issues with the data or model, and lead to qualified results that strike a reasonable balance between generality and practical relevance. Such guidelines are being developed by statisticians to support the latest techniques for Bayesian data analysis. In this article, we frame these guidelines in a way that is apt to empirical research in software engineering. To demonstrate the guidelines in practice, we apply them to reanalyze a GitHub dataset about code quality in different programming languages. The datasets original analysis (Ray et al., 2014) and a critical reanalysis (Berger at al., 2019) have attracted considerable attention -- in no small part because they target a topic (the impact of different programming languages) on which strong opinions abound. The goals of our reanalysis are largely orthogonal to this previous work, as we are concerned with demonstrating, on data in an interesting domain, how to build a principled Bayesian data analysis and to showcase some of its benefits. In the process, we will also shed light on some critical aspects of the analyzed data and of the relationship between programming languages and code quality. The high-level conclusions of our exercise will be that Bayesian statistical techniques can be applied to analyze software engineering data in a way that is principled, flexible, and leads to convincing results that inform the state of the art while highlighting the boundaries of its validity. The guidelines can support building solid statistical analyses and connecting their results, and hence help buttress continued progress in empirical software engineering research.
In the last decade, two paradigm shifts have reshaped the software industry - the move from boxed products to services and the widespread adoption of cloud computing. This has had a huge impact on the software development life cycle and the DevOps pr ocesses. Particularly, incident management has become critical for developing and operating large-scale services. Incidents are created to ensure timely communication of service issues and, also, their resolution. Prior work on incident management has been heavily focused on the challenges with incident triaging and de-duplication. In this work, we address the fundamental problem of structured knowledge extraction from service incidents. We have built SoftNER, a framework for unsupervised knowledge extraction from service incidents. We frame the knowledge extraction problem as a Named-entity Recognition task for extracting factual information. SoftNER leverages structural patterns like key,value pairs and tables for bootstrapping the training data. Further, we build a novel multi-task learning based BiLSTM-CRF model which leverages not just the semantic context but also the data-types for named-entity extraction. We have deployed SoftNER at Microsoft, a major cloud service provider and have evaluated it on more than 2 months of cloud incidents. We show that the unsupervised machine learning based approach has a high precision of 0.96. Our multi-task learning based deep learning model also outperforms the state of the art NER models. Lastly, using the knowledge extracted by SoftNER we are able to build significantly more accurate models for important downstream tasks like incident triaging.
Open source projects often maintain open bug repositories during development and maintenance, and the reporters often point out straightly or implicitly the reasons why bugs occur when they submit them. The comments about a bug are very valuable for developers to locate and fix the bug. Meanwhile, it is very common in large software for programmers to override or overload some methods according to the same logic. If one method causes a bug, it is obvious that other overridden or overloaded methods maybe cause related or similar bugs. In this paper, we propose and implement a tool Rebug- Detector, which detects related bugs using bug information and code features. Firstly, it extracts bug features from bug information in bug repositories; secondly, it locates bug methods from source code, and then extracts code features of bug methods; thirdly, it calculates similarities between each overridden or overloaded method and bug methods; lastly, it determines which method maybe causes potential related or similar bugs. We evaluate Rebug-Detector on an open source project: Apache Lucene-Java. Our tool totally detects 61 related bugs, including 21 real bugs and 10 suspected bugs, and it costs us about 15.5 minutes. The results show that bug features and code features extracted by our tool are useful to find real bugs in existing projects.
Mutation testing has been widely accepted as an approach to guide test case generation or to assess the effectiveness of test suites. Empirical studies have shown that mutants are representative of real faults; yet they also indicated a clear need fo r better, possibly customized, mutation operators and strategies. While methods to devise domain-specific or general-purpose mutation operators from real faults exist, they are effort- and error-prone, and do not help the tester to decide whether and how to mutate a given source code element. We propose a novel approach to automatically learn mutants from faults in real programs. First, our approach processes bug fixing changes using fine-grained differencing, code abstraction, and change clustering. Then, it learns mutation models using a deep learning strategy. We have trained and evaluated our technique on a set of ~787k bug fixes mined from GitHub. Our empirical evaluation showed that our models are able to predict mutants that resemble the actual fixed bugs in between 9% and 45% of the cases, and over 98% of the automatically generated mutants are lexically and syntactically correct.
Software developers solve a diverse and wide range of problems. While software engineering research often focuses on tools to support this problem solving, the strategies that developers use to solve problems are at least as important. In this paper, we offer a novel approach for enabling developers to follow explicit programming strategies that describe how an expert tackles a common programming problem. We define explicit programming strategies, grounding our definition in prior work both within software engineering and in other professions which have adopted more explicit procedures for problem solving. We then present a novel notation called Roboto and a novel StrategyTracker tool that explicitly represents programming strategies and frame executing strategies as a collaborative effort between human abilities to make decisions and computer abilities to structure process and persist information. Ina formative evaluation, 28 software developers of varying expertise completed a design task and a debugging task. We found that, compared to developers who are free to choose their strategies, developers gave explicit strategies experienced their work as more organized, systematic, and predictable, but also more constrained. Developers using explicit strategies were objectively more successful at the design and debugging tasks. We discuss the implications of Roboto and these findings, envisioning a thriving ecosystem of explicit strategies that accelerate and improve developers programming problem solving.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا