ﻻ يوجد ملخص باللغة العربية
To ensure the privacy of sensitive data used in the training of deep learning models, a number of privacy-preserving methods have been designed by the research community. However, existing schemes are generally designed to work with textual data, or are not efficient when a large number of images is used for training. Hence, in this paper we propose a lightweight and efficient approach to preserve image privacy while maintaining the availability of the training set. Specifically, we design the pixel block mixing algorithm for image classification privacy preservation in deep learning. To evaluate its utility, we use the mixed training set to train the ResNet50, VGG16, InceptionV3 and DenseNet121 models on the WIKI dataset and the CNBC face dataset. Experimental findings on the testing set show that our scheme preserves image privacy while maintaining the availability of the training set in the deep learning models. Additionally, the experimental results demonstrate that we achieve good performance for the VGG16 model on the WIKI dataset and both ResNet50 and DenseNet121 on the CNBC dataset. The pixel block algorithm achieves fairly high efficiency in the mixing of the images, and it is computationally challenging for the attackers to restore the mixed training set to the original training set. Moreover, data augmentation can be applied to the mixed training set to improve the trainings effectiveness.
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the di
With the rising use of Machine Learning (ML) and Deep Learning (DL) in various industries, the medical industry is also not far behind. A very simple yet extremely important use case of ML in this industry is for image classification. This is importa
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where imag
Sharing images online poses security threats to a wide range of users due to the unawareness of privacy information. Deep features have been demonstrated to be a powerful representation for images. However, deep features usually suffer from the issue
Recently, label consistent k-svd (LC-KSVD) algorithm has been successfully applied in image classification. The objective function of LC-KSVD is consisted of reconstruction error, classification error and discriminative sparse codes error with L0-nor