ترغب بنشر مسار تعليمي؟ اضغط هنا

This is a reply to A. A. Katanins comment [A. A. Katanin, Nat. Commun. 12, 1433 (2021); arXiv:2103.02966] on our paper [X. Deng et al., Nat. Commun. 10, 2721 (2019); arXiv:1708.05752].
We report a combined study of transport and thermodynamic measurements on the layered pnictide material SrAg4As2. Upon cooling, a drop in electrical and Hall resistivity, a jump in heat capacity and an increase in susceptibility and magnetoresistance (MR) are observed around 110 K. These observations suggest that non-magnetic phase transitions emerge at around 110 K, that are likely associated with structural distortions. In sharp contrast with the first-principles calculations based on the crystal structure at room temperature, quantum oscillations reveal small Fermi pockets with light effective masses, suggesting a significant change in the Fermi surface topology caused by the low temperature structural distortion. No superconductivity emerges in SrAg$_4$As$_2$ down to 2 K and under pressures up to 2.13 GPa; instead, the low temperature structural distortion increases linearly with temperature at a rate of ~13 K/GPa above 0.89 GPa.
Topological semimetals are characterized by protected crossings between conduction and valence bands. These materials have recently attracted significant interest because of the deep connections to high-energy physics, the novel topological surface s tates, and the unusual transport phenomena. While Dirac and Weyl semimetals have been extensively studied, the nodal-line semimetal remains largely unexplored due to the lack of an ideal material platform. In this paper, we report the magneto-transport properties of two nodal-line semimetal candidates CaAgAs and CaCdGe. First, our single crystalline CaAgAs supports the first hydrogen atom nodal-line semimetal, where only the topological nodal-line is present at the Fermi level. Second, our CaCdGe sample provides an ideal platform to perform comparative studies because it features the same topological nodal line but has a more complicated Fermiology with irrelevant Fermi pockets. As a result, the magnetoresistance of our CaCdGe sample is more than 100 times larger than that of CaAgAs. Through our systematic magneto-transport and first-principles band structure calculations, we show that our CaTX compounds can be used to study, isolate, and control the novel topological nodal-line physics in real materials.
We report on the emergence of robust superconducting order in single crystal alloys of 2H-TaSe$_{2-x}$S$_{x}$ (0$leq$x$leq$2) . The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe$_{2}$ and TaS$_{2}$. The evolution of superconducting critical temperature T$_{c} (x)$ correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe$_{2}$ and/or 2H-TaS$_{2}$. It is known that in these materials superconductivity (SC) is in close competition with charge density wave (CDW) order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the CDW order.
We derive an exact operatorial reformulation of the rotational invariant slave boson method and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to tre at strong electron correlations, spin-orbit coupling and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO$_2$, and show that the ground state of this system displays a pronounced orbital differention within the $5f$ manifold, with Mott localized $Gamma_8$ and extended $Gamma_7$ electrons.
We develop a variational scheme called Gutzwiller renormalization group (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method can exploit the low-entanglement property o f the ground state in combination with the framework of the Gutzwiller wavefunction, and suggests that the ground state of the AIM has a very simple structure, which can be represented very accurately in terms of a surprisingly small number of variational parameters. We perform benchmark calculations of the single-band AIM that validate our theory and indicate that the GRG might enable us to study complex systems beyond the reach of the other methods presently available and pave the way to interesting generalizations, e.g., to nonequilibrium transport in nanostructures.
196 - XiaoYu Deng , Lei Wang , Xi Dai 2008
We introduce in detail our newly developed textit{ab initio} LDA+Gutzwiller method, in which the Gutzwiller variational approach is naturally incorporated with the density functional theory (DFT) through the Gutzwiller density functional theory (GDFT ) (which is a generalization of original Kohn-Sham formalism). This method can be used for ground state determination of electron systems ranging from weakly correlated metal to strongly correlated insulators with long-range ordering. We will show that its quality for ground state is as high as that by dynamic mean field theory (DMFT), and yet it is computationally much cheaper. In additions, the method is fully variational, the charge-density self-consistency can be naturally achieved, and the quantities, such as total energy, linear response, can be accurately obtained similar to LDA-type calculations. Applications on several typical systems are presented, and the characteristic aspects of this new method are clarified. The obtained results using LDA+Gutzwiller are in better agreement with existing experiments, suggesting significant improvements over LDA or LDA+U.
85 - XiaoYu Deng , Xi Dai , Zhong Fang 2007
Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO$_3$, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا