ترغب بنشر مسار تعليمي؟ اضغط هنا

The zero-mass (ZM) parton formalism is widely used in high-energy physics because of its simplicity and historical importance, even while massive quarks (c,b,t) are playing an increasingly prominent role in particle phenomenology, including global QC D analyses of parton distributions based on the more precise general-mass (GM) QCD formalism. In view of this dichotomy, we show how the obvious inconsistencies of the conventional implementation of the ZM formalism can be corrected, while preserving the simplicity of its matrix elements. The resulting intermediate mass (IM) scheme for perturbative QCD calculation can be considered either as improved ZM formulation with realistic treatment of heavy-flavor kinematics; or as a simplified GM formulation with approximate ZM hard cross sections. Phenomenologically, global analyses based on IM calculations can effectively reproduce, within the present estimated uncertainty bands, the more correct GM results on parton distributions, as well as their predictions for a wide range of collider processes of current interest.
100 - Wu-Ki Tung , H.L. Lai , J. Pumplin 2007
The systematic treatment of heavy quark mass effects in DIS in current CTEQ global analysis is summarized. Applications of this treatment to the comparison between theory and experimental data on DIS charm production are described. The possibility of intrinsic charm in the nucleon is studied. The issue of determining the charm mass in global analysis is discussed.
110 - Wu-Ki Tung , H.L. Lai , J. Pumplin 2007
An overview is given of recent progress on a variety of fronts in the global QCD analysis of the parton structure of the nucleon and its implication for collider phenomenology, carried out by various subgroups of the CTEQ collaboration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا