ترغب بنشر مسار تعليمي؟ اضغط هنا

As a part of science of science (SciSci) research, the evolution of scientific disciplines has been attracting a great deal of attention recently. This kind of discipline level analysis not only give insights of one particular field but also shed lig ht on general principles of scientific enterprise. In this paper we focus on graphene research, a fast growing field covers both theoretical and applied study. Using co-clustering method, we split graphene literature into two groups and confirm that one group is about theoretical research (T) and another corresponds to applied research (A). We analyze the proportion of T/A and found applied research becomes more and more popular after 2007. Geographical analysis demonstrated that countries have different preference in terms of T/A and they reacted differently to research trend. The interaction between two groups has been analyzed and shows that T extremely relies on T and A heavily relies on A, however the situation is very stable for T but changed markedly for A. No geographic difference is found for the interaction dynamics. Our results give a comprehensive picture of graphene research evolution and also provide a general framework which is able to analyze other disciplines.
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.
There is demand from science funders, industry, and the public that science should become more risk-taking, more out-of-the-box, and more interdisciplinary. Is it possible to tell how interdisciplinary and out-of-the-box scientific papers are, or whi ch papers are mainstream? Here we use the bibliographic coupling network, derived from all physics papers that were published in the Physical Review journals in the past century, to try to identify them as mainstream, out-of-the-box, or interdisciplinary. We show that the network clusters into scientific fields. The position of individual papers with respect to these clusters allows us to estimate their degree of mainstreamness or interdisciplinary. We show that over the past decades the fraction of mainstream papers increases, the fraction of out-of-the-box decreases, and the fraction of interdisciplinary papers remains constant. Studying the rewards of papers, we find that in terms of absolute citations, both, mainstream and interdisciplinary papers are rewarded. In the long run, mainstream papers perform less than interdisciplinary ones in terms of citation rates. We conclude that to avoid a trend towards mainstreamness a new incentive scheme is necessary.
Todays scientific research is an expensive enterprise funded largely by taxpayers and corporate groups monies. It is a critical part in the competition between nations, and all nations want to discover fields of research that promise to create future industries, and dominate these by building up scientific and technological expertise early. However, our understanding of the value chain going from science to technology is still in a relatively infant stage, and the conversion of scientific leadership into market dominance remains very much an alchemy rather than a science. In this paper, we analyze bibliometric records of scientific journal publications and patents related to graphene, at the aggregate level as well as on the temporal and spatial dimensions. We find the present leaders of graphene science and technology emerged rather late in the race, after the initial scientific leaders lost their footings. More importantly, notwithstanding the amount of funding already committed, we find evidences that suggest the Golden Eras of graphene science and technology were in 2010 and 2012 respectively, in spite of the continued growth of journal and patent publications in this area.
The advancement of science as outlined by Popper and Kuhn is largely qualitative, but with bibliometric data it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore it is also important to allocate finite re sources to research topics that have growth potential, to accelerate the process from scientific breakthroughs to technological innovations. In this paper, we address this problem of quantitative knowledge evolution by analysing the APS publication data set from 1981 to 2010. We build the bibliographic coupling and co-citation networks, use the Louvain method to detect topical clusters (TCs) in each year, measure the similarity of TCs in consecutive years, and visualize the results as alluvial diagrams. Having the predictive features describing a given TC and its known evolution in the next year, we can train a machine learning model to predict future changes of TCs, i.e., their continuing, dissolving, merging and splitting. We found the number of papers from certain journals, the degree, closeness, and betweenness to be the most predictive features. Additionally, betweenness increases significantly for merging events, and decreases significantly for splitting events. Our results represent a first step from a descriptive understanding of the Science of Science (SciSci), towards one that is ultimately prescriptive.
We present an ab initio study of dopant-dopant interactions in beryllium-doped InGaAs. We consider defect formation energies of various interstitial and substitutional defects and their combinations. We find that all substitutional-substitutional int eractions can be neglected. On the other hand, interactions involving an interstitial defect are significant. Specially, interstitial Be is stabilized by about 0.9/1.0 eV in the presence of one/two BeGa substitutionals. Ga interstitial is also substantially stabilized by Be interstitials. Two Be interstitials can form a metastable Be-Be-Ga complex with a dissociation energy of 0.26 eV/Be. Therefore, interstitial defects and defect-defect interactions should be considered in accurate models of Be doped InGaAs. We suggest that In and Ga should be treated as separate atoms and not lumped into a single effective group III element, as has been done before. We identified dopant-centred states which indicate the presence of other charge states at finite temperatures, specifically, the presence of Beint+1 (as opposed to Beint+2 at 0K).
Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the APS publications data sets, we ask in this letter how new knowledge is built upon o ld knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on BEC, quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events.
By using a state of art tensor network state method, we study the ground-state phase diagram of an extended Bose-Hubbard model on the square lattice with frustrated next-nearest neighboring tunneling. In the hardcore limit, tunneling frustration stab ilizes a peculiar half supersolid (HSS) phase with one sublattice being superfluid and the other sublattice being Mott Insulator away from half filling. In the softcore case, the model shows very rich phase diagrams above half filling, including three different types of supersolid phases depending on the interaction parameters. The considered model provides a promising route to experimentally search for novel stable supersolid state induced by frustrated tunneling in below half filling region with dipolar atoms or molecules.
A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we pr opose a comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا